Proof: Triangles $\rightarrow 180^{\circ}$

The sum of the angles of a triangle is 180°.

Right Triangles

We will start with right triangles, and then expand our proof later to include all triangles.

Your Basic Right Triangle

A right triangle has three angles, one of which is 90°.

Sum $=90^{\circ}+b+c$

Two Equal Angles

Because they are alternate interior angles, the two angles marked c are equal.

Sum $=90^{\circ}+b+c$

$b+c=90^{\circ}$

Angles b and c

 together form another right angle. Or, $b+c=90^{\circ}$.

Sum $=90^{\circ}+b+c$

$a+b+c=180^{\circ}$

$b+c=90^{\circ}$, so let's substitute that into our sum equation.

Sum $=90^{\circ}+b+c$
Sum $=90^{\circ}+90^{\circ}$
Sum $=180^{\circ}$

Sum $=90^{\circ}+b+c$

Ta Da!

We have proven that the sum of the angles of a RIGHT triangle add up to 180°.

Your Basic Triangle

What about other triangles that may not be right triangles?

Two Right Triangles

Any triangle can be split up into two right triangles.

Sum of 360°

The angles of those two RIGHT triangles each sum to 180°, for a grand total of 360°.

$$
\begin{aligned}
& a+b+c=180^{\circ} \\
& d+e+f=180^{\circ}
\end{aligned}
$$

Sum $=a+b+c+d+e+f=360^{\circ}$

c and f Don't Count!

We added angles c and f into our sum, but they aren't actually angles of the triangle.

Subtract 180°

Angles c and f make a straight line, which is 180°. We have to subtract that from our original sum of 360°.

Sum $=360^{\circ}-c-f=360^{\circ}-180^{\circ}=180^{\circ}$

The End

We have now proved that the sum of the angles in ANY triangle is 180°.

