Skip to main content

Advertisement

Log in

In vitro and in vivo antineoplastic and immunological effects of pterocarpanquinone LQB-118

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Cancer is a malignancy of worldwide prevalence, and although new therapeutic strategies are under investigation, patients still resort to reductive or palliative chemotherapy. Side effects are a great concern, since treatment can render patients susceptible to infections or secondary cancers. Thus, design of safer chemotherapeutic drugs must consider the risk of immunotoxicity. Pterocarpans are natural isoflavones that possess immunomodulatory and antineoplastic properties. Ubiquitous in nature, quinones are present in chemotherapeutic drugs such as doxorubicin and mitoxantrone. Our group has patented a hybrid molecule, the pterocarpanquinone LQB-118, and demonstrated its antineoplastic effect in vitro. In this report we describe its antineoplastic effect in vivo and assess its toxicity toward the immune system. Treated mice presented no changes in weight of primary and secondary organs of the immune system nor their cellular composition. Immunophenotyping showed that treatment increased CD4+ thymocytes and proportionally reduced the CD4+CD8+ subpopulation in the thymus. No significant changes were observed in T CD8+ peripheral lymphocytes nor was the activation of fresh T cells affected after treatment. LQB-118 induced apoptosis in murine tumor cells in vitro, being synergistic with the autophagy promoter rapamycin. Furthermore, treatment significantly reduced ascites or solid Ehrlich and B16F10 melanoma growth in vivo, and ameliorated side effects such as cachexia. Based on its favorable preclinical profile and considering previous results obtained in vitro, this drug emerges as a promising candidate for further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Donnelly DMX, Boland GM (1995) Isoflavonoids and neoflavonoids: naturally occurring O-heterocycles. Nat Prod Rep 12:321. doi:10.1039/np9951200321

    Article  CAS  Google Scholar 

  2. Kostelac D, Rechkemmer G, Briviba K (2003) Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 51:7632–7635. doi:10.1021/jf034427b

    Article  CAS  PubMed  Google Scholar 

  3. Zhou H, Lutterodt H, Cheng Z, Yu LL (2009) Anti-inflammatory and antiproliferative activities of trifolirhizin, a flavonoid from Sophora flavescens roots. J Agric Food Chem 57:4580–4585. doi:10.1021/jf900340b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. da Silva AJ, Netto CD, Costa PR (2004) The first synthesis of (±)-3, 4-dihydroxy-8,9-methylenedioxypterocarpan, an antitumoral agent and its coumestan derivative. J Braz Chem Soc 15:979–981. doi:10.1590/S0103-50532004000600029

    Article  Google Scholar 

  5. Netto CD, Santos ES, Castro CP, da Silva AJ, Rumjanek VM, Costa PR (2009) (+/−)-3,4-dihydroxy-8,9-methylenedioxypterocarpan and derivatives: cytotoxic effect on human leukemia cell lines. Eur J Med Chem 44:920–925. doi:10.1016/j.ejmech.2008.01.027

    Article  CAS  PubMed  Google Scholar 

  6. Kuete V, Sandjo LP, Djeussi DE, Zeino M, Kwamou GM, Ngadjui B, Efferth T (2014) Cytotoxic flavonoids and isoflavonoids from Erythrina Sigmoidea towards multi-factorial drug resistant cancer cells. Investig New Drugs 32:1053–1062. doi:10.1007/s10637-014-0137-y

    Article  CAS  Google Scholar 

  7. Buarque CD, Salustiano EJ, Fraga KC, Alves BR, Costa PR (2014) 11a-N-Tosyl-5-deoxi-pterocarpan (LQB-223), a promising prototype for targeting MDR leukemia cell lines. Eur J Med Chem 78:190–197. doi:10.1016/j.ejmech.2014.03.039

    Article  CAS  PubMed  Google Scholar 

  8. O'Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 80:1–41. doi:10.1016/0009-2797(91)90029-7

    Article  PubMed  Google Scholar 

  9. Derenzini E, Casadei B, Broccoli A, Gandolfi L, Pellegrini C, Zinzani PL (2014) Sequential therapy with alternating short courses of R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) and R-FM (rituximab, fludarabine, mitoxantrone) followed by autologous stem cell transplantation results in long term remission in advanced follicular lymphoma. Br J Haematol 166:625–628. doi:10.1111/bjh.12894

    Article  CAS  PubMed  Google Scholar 

  10. Wojnowski L, Kulle B, Schirmer M, Schluter G, Schmidt A, Rosenberger A, Vonhof S, Bickeboller H, Toliat MR, Suk EK, Tzvetkov M, Kruger A, Seifert S, Kloess M, Hahn H, Loeffler M, Nurnberg P, Pfreundschuh M, Trumper L, Brockmoller J, Hasenfuss G (2005) NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112:3754–3762. doi:10.1161/CIRCULATIONAHA.105.576850

    Article  CAS  PubMed  Google Scholar 

  11. da Cunha-Junior EF, Pacienza-Lima W, Ribeiro GA, Netto CD, do Canto-Cavalheiro MM, da Silva AJ, Costa PR, Rossi-Bergmann B, Torres-Santos EC (2011) Effectiveness of the local or oral delivery of the novel naphthopterocarpanquinone LQB-118 against cutaneous leishmaniasis. J Antimicrob Chemother 66:1555–1559. doi:10.1093/jac/dkr158

    Article  PubMed  Google Scholar 

  12. Salustiano EJ, Netto CD, Fernandes RF, da Silva AJ, Bacelar TS, Castro CP, Buarque CD, Maia RC, Rumjanek VM, Costa PR (2010) Comparison of the cytotoxic effect of lapachol, alpha-lapachone and pentacyclic 1,4-naphthoquinones on human leukemic cells. Investig New Drugs 28:139–144. doi:10.1007/s10637-009-9231-y

    Article  CAS  Google Scholar 

  13. Netto CD, da Silva AJ, Salustiano EJ, Bacelar TS, Rica IG, Cavalcante MC, Rumjanek VM, Costa PR (2010) New pterocarpanquinones: synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-alpha modulation in human PBMC cells. Bioorg Med Chem 18:1610–1616. doi:10.1016/j.bmc.2009.12.073

    Article  CAS  PubMed  Google Scholar 

  14. Da Silva AJM, Rumjanek VMBD, Bergmann BR, Salustiano EJ, Costa PRR, Netto CD, Lima WP, Dos Santos ECT, Cavalcante MCM, Seabra SH (2014) Compounds of the pterocarpanquinone family, method for preparing the same, pharmaceutical composition containing the new compounds of the pterocarpanquinone family, uses and therapeutic method. United States Patent US8835489-B2, 16–09-2014 doi:10.13140/RG.2.1.1944.7769

  15. Martino T, Magalhaes FC, Justo GA, Coelho MG, Netto CD, Costa PR, Sabino KC (2014) The pterocarpanquinone LQB-118 inhibits tumor cell proliferation by downregulation of c-Myc and cyclins D1 and B1 mRNA and upregulation of p21 cell cycle inhibitor expression. Bioorg Med Chem 22:3115–3122. doi:10.1016/j.bmc.2014.04.025

    Article  CAS  PubMed  Google Scholar 

  16. Ribeiro GA, Cunha-Junior EF, Pinheiro RO, da-Silva SA, Canto-Cavalheiro MM, da Silva AJ, Costa PR, Netto CD, Melo RC, Almeida-Amaral EE, Torres-Santos EC (2013) LQB-118, an orally active pterocarpanquinone, induces selective oxidative stress and apoptosis in Leishmania amazonensis. J Antimicrob Chemother 68:789–799. doi:10.1093/jac/dks498

    Article  CAS  PubMed  Google Scholar 

  17. Nestal de Moraes G, Castro CP, Salustiano EJ, Dumas ML, Costas F, Lam EW, Costa PR, Maia RC (2014) The pterocarpanquinone LQB-118 induces apoptosis in acute myeloid leukemia cells of distinct molecular subtypes and targets FoxO3a and FoxM1 transcription factors. Int J Oncol 45:1949–1958. doi:10.3892/ijo.2014.2615

    CAS  PubMed  Google Scholar 

  18. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  19. Palacios R (1982) Concanavalin a triggers T lymphocytes by directly interacting with their receptors for activation. J Immunol 128:337–342

    CAS  PubMed  Google Scholar 

  20. Maia RC, Vasconcelos FC, de Sa BT, Salustiano EJ, da Silva LF, Pereira DL, Moellman-Coelho A, Netto CD, da Silva AJ, Rumjanek VM, Costa PR (2011) LQB-118, a pterocarpanquinone structurally related to lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]: a novel class of agent with high apoptotic effect in chronic myeloid leukemia cells. Investig New Drugs 29:1143–1155. doi:10.1007/s10637-010-9453-z

    Article  CAS  Google Scholar 

  21. Buarque CD, Militao GC, Lima DJ, Costa-Lotufo LV, Pessoa C, de Moraes MO, Cunha-Junior EF, Torres-Santos EC, Netto CD, Costa PR (2011) Pterocarpanquinones, aza-pterocarpanquinone and derivatives: synthesis, antineoplasic activity on human malignant cell lines and antileishmanial activity on Leishmania amazonensis. Bioorg Med Chem 19:6885–6891. doi:10.1016/j.bmc.2011.09.025

    Article  CAS  PubMed  Google Scholar 

  22. de Souza Reis FR, de Faria FC, Castro CP, de Souza PS, da Cunha VF, Bello RD, da Silva AJ, Costa PR, Maia RC (2013) The therapeutical potential of a novel pterocarpanquinone LQB-118 to target inhibitor of apoptosis proteins in acute myeloid leukemia cells. Anti Cancer Agents Med Chem 13:341–351. doi:10.2174/1871520611313020019

    Article  Google Scholar 

  23. de Faria FC, Leal ME, Bernardo PS, Costa PR, Maia RC (2015) NFkappaB pathway and microRNA-9 and −21 are involved in sensitivity to the pterocarpanquinone LQB-118 in different CML cell lines. Anti Cancer Agents Med Chem 15:345–352. doi:10.2174/18715206113139990108

    Article  Google Scholar 

  24. Oh ET, Park HJ (2015) Implications of NQO1 in cancer therapy. BMB Rep 48:609–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng SM, Chang YC, Liu CY, Lee JY, Chan HH, Kuo CW, Lin KY, Tsai SL, Chen SH, Li CF, Leung E, Kanwar JR, Huang CC, Chang JY, Cheung CH (2015) YM155 down-regulates survivin and XIAP, modulates autophagy and induces autophagy-dependent DNA damage in breast cancer cells. Br J Pharmacol 172:214–234. doi:10.1111/bph.12935

    Article  CAS  PubMed  Google Scholar 

  26. Ma Q, Chang Z, Wang W, Wang B (2015) Rapamycin-mediated mTOR inhibition reverses drug resistance to Adriamycin in Colon cancer cells. Hepato-Gastroenterology 62:880–886

    PubMed  Google Scholar 

  27. Chagin AS (2016) Effectors of mTOR-autophagy pathway: targeting cancer, affecting the skeleton. Curr Opin Pharmacol 28:1–7. doi:10.1016/j.coph.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  28. Buckner JC, Forouzesh B, Erlichman C, Hidalgo M, Boni JP, Dukart G, Berkenblit A, Rowinsky EK (2010) Phase I, pharmacokinetic study of temsirolimus administered orally to patients with advanced cancer. Investig New Drugs 28:334–342. doi:10.1007/s10637-009-9257-1

    Article  CAS  Google Scholar 

  29. Mita MM, Mita A, Rowinsky EK (2003) The molecular target of rapamycin (mTOR) as a therapeutic target against cancer. Cancer Biol Ther 2:S169–S177

    Article  CAS  PubMed  Google Scholar 

  30. Capone F, Guerriero E, Sorice A, Colonna G, Storti G, Pagliuca J, Castello G, Costantini S (2014) Synergistic antitumor effect of doxorubicin and tacrolimus (FK506) on hepatocellular carcinoma cell lines. ScientificWorldJournal 2014:450390. doi:10.1155/2014/450390

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mazur B, Szczepanski T, Karpe J, Sonta-Jakimczyk D, Bubala H, Torbus M (2006) Decreased numbers of CD4+ T lymphocytes in peripheral blood after treatment of childhood acute lymphoblastic leukemia. Leuk Res 30:33–36. doi:10.1016/j.leukres.2005.05.024

    Article  CAS  PubMed  Google Scholar 

  32. Germain RN (2002) T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2:309–322. doi:10.1038/nri798

    Article  CAS  PubMed  Google Scholar 

  33. Allodji RS, Schwartz B, Veres C, Haddy N, Rubino C, Le Deley MC, Labbe M, Diop F, Jackson A, Dayet F, Benabdennebi A, Llanas D, Vu Bezin J, Chavaudra J, Lefkopoulos D, Deutsch E, Oberlin O, de Vathaire F, Diallo I (2015) Risk of subsequent leukemia after a solid tumor in childhood: impact of bone marrow radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys 93:658–667. doi:10.1016/j.ijrobp.2015.07.2270

    Article  PubMed  Google Scholar 

  34. Ribatti D, Crivellato E (2012) Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta 1822:2–8. doi:10.1016/j.bbadis.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  35. Aoyagi T, Terracina KP, Raza A, Matsubara H, Takabe K (2015) Cancer cachexia, mechanism and treatment. World J Gastrointest Oncol 7:17–29. doi:10.4251/wjgo.v7.i4.17

    PubMed  PubMed Central  Google Scholar 

  36. Argiles JM, Busquets S, Lopez-Soriano FJ (2011) Anti-inflammatory therapies in cancer cachexia. Eur J Pharmacol 668(Suppl 1):S81–S86. doi:10.1016/j.ejphar.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  37. Camargo CA, Gomes-Marcondes MC, Wutzki NC, Aoyama H (2012) Naringin inhibits tumor growth and reduces interleukin-6 and tumor necrosis factor alpha levels in rats with Walker 256 carcinosarcoma. Anticancer Res 32:129–133

    CAS  PubMed  Google Scholar 

  38. Li B, Wan L, Li Y, Yu Q, Chen P, Gan R, Yang Q, Han Y, Guo C (2014) Baicalin, a component of Scutellaria Baicalensis, alleviates anorexia and inhibits skeletal muscle atrophy in experimental cancer cachexia. Tumour Biol 35:12415–12425. doi:10.1007/s13277-014-2558-9

    Article  CAS  PubMed  Google Scholar 

  39. de Oliveira SI, Andrade LN, Onuchic AC, Nonogaki S, Fernandes PD, Pinheiro MC, Rohde CB, Chammas R, Jancar S (2010) Platelet-activating factor receptor (PAF-R)-dependent pathways control tumour growth and tumour response to chemotherapy. BMC Cancer 10:200. doi:10.1186/1471-2407-10-200

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Prof. Alcides José Monteiro da Silva and Prof. Camilla Djenne Buarque Müller for participating in discussions and the preparing of LQB-118. We would also like to thank Dr. Ottilia Rodrigues Affonso-Mitidieri for useful suggestions in chemistry, Prof. Martha Meriwether Sorenson for reviewing the manuscript and Prof. Claudio Akio Masuda for his kind rapamycin donation. Research was supported by grants from: Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq; Financiadora de Estudos e Projetos – FINEP; Programa de Oncobiologia; Fundação do Câncer; Instituto Nacional de Ciência e Tecnologia para Controle do Câncer – INCT-Câncer, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo J. Salustiano.

Ethics declarations

Conflict of interest

LQB-118, compounds of the pterocarpanquinone family, methods for preparing the same, pharmaceutical compositions containing new compounds of the pterocarpanquinone family, uses and therapeutic methods are protected under patent number US8835489B2, assigned to the Federal University of Rio de Janeiro and granted by USPTO in 16–09-2014 [14]. Eduardo J. Salustiano, Chaquip D. Netto, Paulo R. Costa and Vivian M. Rumjanek are listed as inventors. Patent was not outlicenced and inventors did not receive money from private companies but grants from public agencies stated in Acknowledgments. Funding agencies had no role in study design, data collection or analysis, decision to publish, or preparation of the manuscript.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. Procedures for animal experimentation were approved by the Centro de Ciências da Saúde Ethics Committee for Animal Use (CEUA-CCS, UFRJ) under protocol number IBQM082.

Additional information

Eduardo J. Salustiano and Matheus L. Dumas shared first authorship.

Electronic Supplementary Material

ESM 1

(PDF 870 kb)

ESM 2

(PDF 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salustiano, E.J., Dumas, M.L., Silva-Santos, G.G. et al. In vitro and in vivo antineoplastic and immunological effects of pterocarpanquinone LQB-118. Invest New Drugs 34, 541–551 (2016). https://doi.org/10.1007/s10637-016-0359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-016-0359-2

Keywords

Navigation