Skip to main content
Log in

Space coding for sensorimotor transformations can emerge through unsupervised learning

  • Short Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

The posterior parietal cortex (PPC) is fundamental for sensorimotor transformations because it combines multiple sensory inputs and posture signals into different spatial reference frames that drive motor programming. Here, we present a computational model mimicking the sensorimotor transformations occurring in the PPC. A recurrent neural network with one layer of hidden neurons (restricted Boltzmann machine) learned a stochastic generative model of the sensory data without supervision. After the unsupervised learning phase, the activity of the hidden neurons was used to compute a motor program (a population code on a bidimensional map) through a simple linear projection and delta rule learning. The average motor error, calculated as the difference between the expected and the computed output, was less than 3°. Importantly, analyses of the hidden neurons revealed gain-modulated visual receptive fields, thereby showing that space coding for sensorimotor transformations similar to that observed in the PPC can emerge through unsupervised learning. These results suggest that gain modulation is an efficient coding strategy to integrate visual and postural information toward the generation of motor commands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen RA, Essick GK, Siegel RM (1985) The encoding of spatial location by posterior parietal neurons. Science 230:456–458

    Article  PubMed  CAS  Google Scholar 

  • Brotchie P, Andersen R, Snyder L (1995) Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375:232–235

    Article  PubMed  CAS  Google Scholar 

  • Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44(13):2594–2606

    Article  PubMed  Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Ann Rev Neurosci 22:319–349

    Article  PubMed  CAS  Google Scholar 

  • Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13(8):1572–1588

    Article  PubMed  CAS  Google Scholar 

  • Hinton GE (2007) Learning multiple layers of representation. Trends Cogn Sci 11(10):428–434

    Article  PubMed  Google Scholar 

  • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  PubMed  CAS  Google Scholar 

  • Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  PubMed  Google Scholar 

  • Mazzoni P, Andersen RA (1991) A more biologically plausible learning rule for neural networks. Neurobiology 88(May):4433–4437

    CAS  Google Scholar 

  • Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38(4):871–908

    PubMed  CAS  Google Scholar 

  • Pouget A, Snyder LH (2000) Computational approaches to sensorimotor transformations. Nat Neurosci 3 Suppl(november):1192–1198

    Google Scholar 

  • Sakata H, Taira M (1994) Parietal control of hand action. Curr Opin Neurobiol 4(6):847–856

    Article  PubMed  CAS  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7(5):430–440

    Article  PubMed  CAS  Google Scholar 

  • Stoianov I, Zorzi M (2012) Emergence of a “visual number sense” in hierarchical generative models. Nat Neurosci 15(2):194–196

    Article  PubMed  CAS  Google Scholar 

  • Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331(6158):679–684

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant # 210922 from the European Research Council to M.Z.

Conflict of Interest

This supplement was not sponsored by outside commercial interests. It was funded entirely by ECONA, Via dei Marsi, 78, 00185 Roma, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Cutini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Filippo De Grazia, M., Cutini, S., Lisi, M. et al. Space coding for sensorimotor transformations can emerge through unsupervised learning. Cogn Process 13 (Suppl 1), 141–146 (2012). https://doi.org/10.1007/s10339-012-0478-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-012-0478-4

Keywords

Navigation