Skip to main content
Log in

A method for measuring the specific heat capacity of layered structures using the Boubaker polynomials expansion scheme

  • Heat Conduction and Heat Exchange in Technological Processes
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An original method is used to measure the specific heat capacity of some layered structures. The conjoint theoretical–experimental measurement protocol is based on photothermal data and polynomial expansion mathematical analysis. The obtained value of the specific heat capacity for a solar cell buffer material is compared to recently reported results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Kozlov, N. A. Abdel’razak, and N. I. Yurchuk, Physicomathematical models for theories of nondestructive testing of thermophysical properties, J. Eng. Phys. Thermophys., 68, No. 6, 818–827 (1995).

    Article  Google Scholar 

  2. N. P. Zhukov and N. F. Mainikova, Modeling of the process of heat transfer from a plane heat source of constant strength in thermophysical measurements, J. Eng. Phys. Thermophys., 78, No. 6, 1104–1112 (2005).

    Article  Google Scholar 

  3. N. P. Zhukov, Method of nondestructive determination of thermophysical properties of solid materials, J. Eng. Phys. Thermophys., 77, No. 5, 818–827 (1995).

    Google Scholar 

  4. F. Inanc, A backscatter radiography simulation study, J. Nondestruct. Eval., 26, Nos. 2–4, 33–46 (2007).

    Article  Google Scholar 

  5. N. Rajic, An investigation of the bias caused by surface coatings on material loss evaluation by quantitative thermography, J. Nondestructive Evaluation, 19, No. 4, 141–147 (2000).

    Article  Google Scholar 

  6. S. Benzerrouk and R. Ludwig, Infrared detection of defects in powder-metallic compacts, J. Nondestruct. Eval., 26, No. 1, 1–9 (2007).

    Article  Google Scholar 

  7. L. P. Filippov, A method for calculating heat capacity and thermal conductivity of liquids, J. Eng. Phys. Thermophys., 32, No. 4, 378–381 (1977).

    Google Scholar 

  8. E. S. Platunov, Methods for measurement of thermal conductivity and specific heat at moderate, low, and cryogenic temperatures, J. Eng. Phys. Thermophys., 53, No. 6, 1452–1457 (1987).

    Google Scholar 

  9. J. Koreck, C. Valle, J. Qu, and L. J. Jacobs, Computational characterization of adhesive layer properties using guided waves in bonded plates, J. Nondestruct. Eval., 26, No. 2–4, 97–105 (2007).

    Article  Google Scholar 

  10. Y. D. Huang, L. Froyen, and M. Wevers, Quality control and nondestructive tests in metal matrix composites, J. Nondestruct. Eval., 20, No. 3, 113–132 (2001).

    Article  Google Scholar 

  11. Q. Lu, G. Shan, Y. Bai, and L. An, Synthesis and characterization of CdSe/ZnO core/shell nanocrystals, Int. J. Nanosci., 5, No. 2/3, 299–306 (2006).

    Article  Google Scholar 

  12. N. Tabet, M. Faiz, and A. Al-Oteibi, Growth of ZnO nanostructures on zinc and Pt substrates, Int. J. Nanosci., 6, No. 1, 23–30 (2007).

    Article  Google Scholar 

  13. I. P. Kazakov, V. I. Kozlovsky, V. P. Marovitsky, Y. K. Skasyrsky, M. D. Tiberi, A. O. Zabezhaylov, and E. M. Dianov, MBE grown ZnSSe/ZnMgSSe MQW structure for blue VCSEL, Int. J. Nanosci., 6, No. 5, 407–410 (2007).

    Article  Google Scholar 

  14. J. Li, Y. Xu, D. Wu, and Y. Sun, In situ assembly of ZnS nanofibers with highly ordered lamellar microstructure, Int. J. Nanosci., 5, 2/3, 245–251 (2006).

    Article  Google Scholar 

  15. X. Bai, E. G. Wang, and Z. L. Wang, Nanomechanics of individual zinc oxide nanobelts measured by in situ transmission electron microscopy, Int. J. Nanosci., 5, 6, 951–958 (2006).

    Article  Google Scholar 

  16. F. Saadallah, N. Yacoubi, and A. Hafaiedh, Determination of the thermal properties of semiconductors using the photothermal method in the many thin layers case, J. Opt. Mater., 6, 35–39 (1996).

    Article  Google Scholar 

  17. N. Yacoubi, A. Hafaiedh, and A. Jouille, Determination of the optical and thermal properties of semiconductors using photothermal method, J. Appl. Opt., 33, No. 30, 7171–7174 (1994).

    Article  Google Scholar 

  18. N. Yacoubi, B. Girault, and Jean Fesquet, Determination of absorption coefficients and thermal conductivity of GaAlAs/GaAs heterostructure using a photothermal method, Appl. Opt., 25, No. 26, 4622–4625 (1999).

    Google Scholar 

  19. R. Tilgner and J. Baumann, Photothermal examination of an adhesive layer, J. Nondestruct. Eval., 3, No. 2, 111–113 (1982).

    Article  Google Scholar 

  20. I. Kaufman, P. Chang, H. Hsu, W. Huang, and D. Shyong, Photothermal radiometric detection and imaging of surface cracks, J. Nondestruct. Eval., 6, No. 2, 87–100 (1987).

    Article  Google Scholar 

  21. C. Tai and J. C. Moulder, Bolt-hole corner crack inspection using the photoinductive imaging method, J. Nondestruct. Eval., 19, No. 3, 81–93 (2000).

    Article  Google Scholar 

  22. V. E. Zhuravlev, A. I. Morozov, and V. Yu. Raevskii, Photothermal determination of the thermophysical characteristics of solid-state objects, J. Eng. Phys. Thermophys., 56, No. 1, 79–83 (1989).

    Google Scholar 

  23. A. S. Podol’tsev and G. I. Zheltov, Heating of intraocular media by near IR laser radiation, J. Eng. Phys. Thermophys., 75, No. 4, 964–969 (2002).

    Article  Google Scholar 

  24. K. Boubaker, M. Bouhafs, and N. Yacoubi, A quantitative alternative to the Vickers hardness test, J. Nondestruct. Test. Eval., 36, No. 8, 547–551 (2003).

    Google Scholar 

  25. K. Boubaker, A new protocol for characterization of dislocations in photovoltaic polycrystalline silicon solar cells, Sol. Energy Mater. Solar Cells, 91, No. 14, 1319–1325 (2007).

    Article  Google Scholar 

  26. Ting Gang Zhao, Y. X. Wang, and K. B. Ben Mahmoud, Int. J. Math. Comput., 1, 13–16 (2008).

    MathSciNet  Google Scholar 

  27. K. Boubaker, Metal lattice atomic structure characterization using mirage effect technique, J. Phys. Met. Metallogr., 101, 51–57 (2006).

    Article  Google Scholar 

  28. S. Slama, J. Bessrour, K. Boubaker, and M. Bouhafs, A dynamical model for investigation of A3 point maximal spatial evolution during resistance spot welding using Boubaker polynomials, Eur. Phys. J. Appl. Phys., 44, 317–322 (2008).

    Article  Google Scholar 

  29. H. Labiadh, M. Dada, O. B. Awojoyogbe, K. B. Ben Mahmoud, and A. Bannour, J. Differ Eq. Contin. Processes, 1, 51–66 (2008).

    Google Scholar 

  30. T. Ghrib, K. Boubaker, and M. Bouhafs, Investigation of thermal diffusivity — microhardness correlation extended to surface-intruded steel using Boubaker polynomials expansion, Mod. Phys. Lett. B, 22, 2907–2915 (2008).

    Article  Google Scholar 

  31. S. Lazzez, K. Boubaker, T. Ben Nasrallah, M. Mnari, R. Chtourou, M. Amlouk, and S. Belgacem, Structural and optoelectronic properties of InZnS sprayed layers, Acta Phys. Pol. A, 114, 86–9880 (2008).

    Google Scholar 

  32. K. Boubaker and M. Bouhafs, Effects of combined radiative and convective heat transfer on temperature profile near plate surface heated by modulated source, Int. J. Mod. Phys. B, 21, No. 11, 1903–1913 (2006).

    Article  Google Scholar 

  33. M. De Otfried, Semiconductors Data Handbook, ISBN:3540404880, Birkhaüser (2003), pp. 338–339.

  34. S. Picard, D. T. Burns, and P. Roger, Determination of the specific heat capacity of a graphite sample using absolute and diffusion methods, Metrologia, 44, 294–302 (2007).

    Article  Google Scholar 

  35. S. M. Stishov, A. E. Petrova, S. Khasanov, G. Kh. Panova, A. A. Shikov, J. C. Lashley, D. Wu, and T. A. Lograsso, Heat capacity and thermal expansion of the itinerant helimagnet MnSi, J. Phys.: Condens. Matter, 20, 235222–235228 (2008).

    Article  Google Scholar 

  36. M. V. Arx, O. Paul, and H. Baltes, Determination of the heat capacity of CMOS layers for optimal sensor design, Sensors Actuators A, 47, Nos. 1–3, 428–431 (1994).

    Google Scholar 

  37. S. Dilhaire, S. Grauby, W. Claeys, and J.-C. Batsale, Thermal parameters identification of micrometric layers of microelectronic devices by thermoreflectance microscopy, Microelectron. J., 35, No. 10, 811–816 (2004).

    Article  Google Scholar 

  38. K. Morimoto, A. Uematsu, S. Sawai, K. Hisano, and T. Yamamoto, Simultaneous measurement of specific heat capacity, thermal conductivity and thermal diffusivity of ferroelectric Ba(Ti1–x ,Sn x )O3 ceramics by thermal radiation calorimetry, Jpn. J. Appl. Phys., 41, No. 11B, 6943–6953 (2002).

    Article  Google Scholar 

  39. K. Morimoto, S. Sawai, and K.Hisanno, Specific heat capacity measurement at high temperature by thermal radiation calorimetry, in: Proc. Int. Conf. on Microwave and Millimeter Wave Technology, ICMMT’98 (1998), pp. 249–252.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Boubaker.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 83, No. 1, pp. 74–79, January–February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boubaker, K. A method for measuring the specific heat capacity of layered structures using the Boubaker polynomials expansion scheme. J Eng Phys Thermophy 83, 83–89 (2010). https://doi.org/10.1007/s10891-010-0321-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0321-7

Keywords

Navigation