Skip to main content
Log in

Analytical expression to temperature-dependent Kirkwood-Fröhlich dipole orientation parameter using the Boubaker Polynomials Expansion Scheme (BPES)

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An analytical expression is proposed to the Kirkwood-Fröhlich dipole orientation correlation parameter g. This parameter, which has been considered as a relevant guide to understanding the structuredness of supercritical fluids, had been always determined numerically. The advantage of the used protocol: the BPES, is to yield continuous and integrable expressions which can be easily incorporated in analytical models. The results have been compared to several precedent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Li, N Zhao, C He, C Shi, X Du, J Li and Q Cui Mater. Sci. & Engin. A, 476 230 (2008)

    Article  Google Scholar 

  2. W Lin, J Pak, D C Ingram and A R Smith J. Alloys Compd. 463 257 (2008)

    Google Scholar 

  3. I Saita, T Toshima, S Tanda and T Akiyama J. Alloys Compd. 446–447 80 (2007)

    Article  Google Scholar 

  4. M R Barati J. Alloys Compd. 478 375 (2009)

    Article  Google Scholar 

  5. P J Haines Thermal Methods of Analysis: (London: Blackie Acad. & Prof.) (1995)

    Google Scholar 

  6. Y Marcus J. Solution Chem. 21 1217 (1992)

    Article  Google Scholar 

  7. G Jansco and A Van Hook Chem. Rev. 74 689 (1974)

    Article  Google Scholar 

  8. G Nemethy, H A Scheraga J. Chem. Phys. 36 3382 (1962)

    Article  ADS  Google Scholar 

  9. L Onsager J. Am. Chem. Soc. 58 1486 (1936)

    Article  Google Scholar 

  10. J G Kirkwood J. Chem. Phys. 7 911 (1939)

    Article  ADS  Google Scholar 

  11. D G Archer and P Wang J. Phys. Chem. Ref Data 19 37 (1990)

    Article  Google Scholar 

  12. W Dannhanser J. Chem. Phys. 48 1911 (1968)

    Article  ADS  Google Scholar 

  13. Yu E Gorbaty and Yu N Dem’yanets Zh. Strukt. Khim. 24 5 (1983)

    Google Scholar 

  14. H Ohtaki, T Radnai and T Yamaguehi Chem. Soc. Rev. 26 41 (1997)

    Article  Google Scholar 

  15. Yu E Gorbaty and Yu N Dem’yanets Chem. Phys. Lett. 100 450 (1983)

    Article  ADS  Google Scholar 

  16. K Yamanaka, T Yamaguchi and H Wakita J. Chem. Phys. 101 9830 (1994)

    Article  ADS  Google Scholar 

  17. Yu E Gorbaty and A G Kaliniehev J. Phys. Chem. 99 5336 (1995)

    Article  Google Scholar 

  18. M Uematsu and E U Franek J. Phys. Chem. Ref. Data 9 1291 (1980)

    Article  ADS  Google Scholar 

  19. R Deul and E U Franck Ber. Bunsenges. Phys. Chem. 95 847 (1991)

    Google Scholar 

  20. K Heger, M Uematsu and E U Franck Ber. Bunsenges. Phys. Chem. 84 758 (1980)

    Google Scholar 

  21. P G Hill and R D C MacMillan J. Phys. Chem. Ref. Data 9 735 (1980)

    Article  ADS  Google Scholar 

  22. O D Oyodum, O B Awojoyogbe, M Dada and J Magnuson Eur. Phys. J. Appl. Phys. 46 21201 (2009)

    Article  Google Scholar 

  23. J Ghanouchi, H Labiadh and K Boubaker Int. J. Heat & Tech. 26(1) 49 (2008)

    Google Scholar 

  24. K Boubaker Trends in App. Sc. Res. 2 540 (2007)

    Article  Google Scholar 

  25. A Chaouachi, K Boubaker, M Amlouk and H Bouzouita Eur. Phys. J. Appl. Phys. 37 105 (2007)

    Article  ADS  Google Scholar 

  26. O B Awojoyogbe and K Boubaker Curr. Appl. Phys. 9 278 (2009)

    Article  ADS  Google Scholar 

  27. H Labiadh J. Diff. Eq. C. Proc. 1 172 (2007)

    Google Scholar 

  28. S Tabatabaei, T Zhao, O Awojoyogbe and F Moses Heat Mass Transf. 45 1247 (2009)

    Article  ADS  Google Scholar 

  29. S Slama, J Bessrour, M Bouhafs and K B Ben Mahmoud Num. Heat Transf. Part A 55 401 (2009)

    Article  ADS  Google Scholar 

  30. K B. Ben Mahmoud J. Thermoph. Heat Transf. 23 409 (2009)

    Article  Google Scholar 

  31. K Boubaker Int. J. Heat & Tech. 20 31 (2008)

    Google Scholar 

  32. Y Marcus J. Molec. Liquids 79 151 (1999)

    Article  Google Scholar 

  33. A H Harvey, R Span, K Fujii, M Tanaka and R S Davis Metrologia 46 196 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. KoÁak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KoÁak, H., Dahong, Z. & Yildirim, A. Analytical expression to temperature-dependent Kirkwood-Fröhlich dipole orientation parameter using the Boubaker Polynomials Expansion Scheme (BPES). Indian J Phys 85, 311–317 (2011). https://doi.org/10.1007/s12648-011-0007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-011-0007-9

Keywords

Navigation