Zooflagellate phylogeny and classification

Tsitologiia. 1995;37(11):1010-29.

Abstract

Zooflagellates are non-photosynthetic flagellates without plastids or cell walls which feed by phagocytosis or endocytosis. They are the most diverse of all eukaryotes and gave rise directly or indirectly to most, if not all, other groups of eukaryotes. They are here classified into thirteen or fourteen phyla, spread across four of the seven eukaryote kingdoms that I now recognize: (1) the probably primitively amitochondrial and entirely non-photosynthetic Archezoa; (2) the usually aerobic but predominantly non-photosynthetic Protozoa; (3) the always aerobic and usually photosynthetic Cryptista; (4) the always aerobic and predominantly photosynthetic Chromista. Whether the few non-photosynthetic haptophytes also lack plastids and thus are zooflagellates in the present sense is unclear. Six phyla (Archamoebae and Metamonada within the Archezoa; Percolozoa, Parabasala, Opalozoa, and Choanozoa within the Protozoa) consist largely or entirely of zooflagellates. One protozoan phylum (Euglenozoa) consists predominantly of zooflagellate families and genera, with a minority only of phytoflagellate genera: the photosynthetic euglenoids are probably all descended from a non-photosynthetic euglenoid which acquired a photosynthetic endosymblont related to the ancestor of green algae. In the phylum Dinozoa (i.e. dinoflagellates and protalveolates) most classes consist purely of zooflagellates, but the majority of species are photosynthetic. The photosynthetic chlorarachneans are related to the sarcomonad zooflagellates and to the filose amoebae, so that the classes Chlorarachnea and Sarcomonadea are now placed in the phylum Rhizopoda, which is also modified by segregating the lobose amoebae as the phylum Amoebozoa. Although most zooflagellates are primitively without photosynthesis, there is good molecular evidence for the secondary origin of the zooflagellate condition by the loss of plastids in the case of the colourless pedinellids. A classification of 62 orders including zooflagellates grouped into 36 classes consisting primarily of zooflagellates, and four classes containing a few zooflagellates is presented; the ultrastructural and molecular evidence for the phylogenetic ideas underlying the classification is summarized.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Eukaryota / classification*
  • Phylogeny*