Skip to main content

ISOTOPES IN MARINE SEDIMENTS

  • Chapter

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 10))

Abstract

Marine sediments provide long continuous records of past climate changes at intra-annual, to centennial scale resolutions enabling insights into past changes within both oceanic and continental environments. Stable isotopes provide palaeoceanographers with the means to reconstruct a range of variables including surface and deep ocean circulation patterns, sea surface and bottom water temperature, sea surface salinity, iceberg activity and origin, upwelling intensity, productivity, nutrient utilisation, surface-water dissolved carbon dioxide content and water-column oxygen content in addition to inferences on global ice volume, sheet failure, river discharge, aridity, vegetation composition, and continental erosion rates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams J.M. and Faure H. 1998. A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction. Global Planet. Change 16–17: 2–24.

    Google Scholar 

  • Adams J.M., Faure H., Faure-Denard L.McGlade J.M. and Woodward F.I. 1990. Increases in terrestrial carbon storage from the Last Glacial maximum to the present. Nature 348: 711–714.

    Article  CAS  Google Scholar 

  • Adkins J.F. and Schrag D.P. 2001. Pore fluid constraints on deep ocean temperature and salinity during the last glacial maximum. Geophys. Res. Lett. 28: 771–774.

    Article  Google Scholar 

  • Adkins J.F., Cheng H., Boyle E.A., Druffel E.R.M. and Edwards R.L. 1998. Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago. Science 280: 725–728.

    Article  CAS  Google Scholar 

  • Alegret L.,Molina E. and Thomas E. 2001. Benthic foraminifera at the Cretaceous/Tertiary boundary around the Gulf of Mexico. Geology 29: 891–894.

    Article  Google Scholar 

  • Alegret L., Arenillas I., Arz J.A., Liesa C. Meléndez A., Molina E., Soria A.R. and Thomas E. 2002. The Cretaceous/Tertiary boundary: sedimentology and micropaleontology at El Mulato section, NE Mexico. Terra Nova 14: 330–336.

    Article  Google Scholar 

  • Alegret L., Molina E. and Thomas E. 2003. Benthic foraminiferal turnover across the Cretaceous/Paleogene boundary at Agost (southeastern Spain): paleoenvironmental inferences. Mar. Micropaleontol. 48: 251–279.

    Google Scholar 

  • Allenby R.J. 1954. Determination of the isotopic ratios of silicon in rocks. Geochim. Cosmochim. Ac. 5: 40–48.

    Article  CAS  Google Scholar 

  • Altabet M.A. 1991. Nitrogen isotopic evidence for the source and transformation of sinking particles in the open ocean. Abstr. Pap. Am. Chem. S. 201: 1, 41-GEOC.

    Google Scholar 

  • Altabet M. 1996. Nitrogen and carbon isotope tracers of the source and transformation of particles in the deep sea. In: Ittekkot V., Schaefer P., Honjo S. and Depetris, P.J. (eds), Particle Flux in the Ocean. SCOPE Report, J. Wiley and Sons, London, pp. 155–184.

    Google Scholar 

  • Altabet M.A. and Curry W.B. 1989. Testing models of past ocean chemistry using foraminifera 15N/14N. Paleoceanography 3: 107–119.

    Google Scholar 

  • Altabet M.A. and Francois R.L. 1994. Sedimentary nitrogen isotope ratio as a recorder for surface ocean nitrate utlization. Global Biogeochem. Cy. 8: 103–116.

    Article  CAS  Google Scholar 

  • Altabet M.A., Deuser W.G. Honjo S. and Stienen C. 1991. Seasonal and depth related changes in the source of sinking particles in the North Atlantic. Nature 354: 136–139.

    Article  Google Scholar 

  • Altabet M.A., Francois R.Murray D.W. and Prell W.L. 1995. Climate related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373: 506–509.

    Article  CAS  Google Scholar 

  • Altabet M.A.,Higginson M.J. and Murray D.W. 2002. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature 415: 159–162.

    Article  CAS  Google Scholar 

  • Andersen N.,Müller P.J., Kirst G. and Schneider R.R. 1999. The 813C signal in C37:2 alkenones as a proxy for reconstructing Late Quaternary pCO2 in surface waters from the South Atlantic. In: Fischer G. and Wefer G. (eds), Use of proxies in paleoceanography: examples from the South Atlantic. Springer-Verlag, New York, pp. 469–488.

    Google Scholar 

  • Anderson T. and Arthur M. 1983. Stable isotopes of oxygen and carbon and their application to sedimentological and paleoenvironmental problems. In: Arthur M. and Anderson T. (eds) SEPM Short Course No. 10: Stable isotopes in Sedimentary Geology. Dallas, pp. 1–1 -1–151.

    Google Scholar 

  • Anderson O.R., Spindler M.Bé A.W.H. and Hemleben Ch. 1979. Tropic activity of planktonic foraminifera. J. Mar. Biol. Assoc. UK. 59: 791–799.

    Google Scholar 

  • Bard E., Hamelin B., Arnold M., Montaggioni L., Cabioch G. Faure G. and Rougerieet F. 1996. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharges. Nature 382: 241–244.

    Article  CAS  Google Scholar 

  • Bard E., Hamelin B. Fairbanks R. and Zindler A. 1999. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405–409.

    Google Scholar 

  • Barrera E. and Johnson C. (eds). 1999. Evolution of the Cretaceous ocean-climate system. Geol. Soc. Am. Special Paper 332, pp. 1–445.

    Google Scholar 

  • Basile-Doelsch I., Meunier J.D. and Parron C. 2005 Another continental pool in the terrestrial silicon cycle. Nature 433: 399–402.

    Article  CAS  Google Scholar 

  • Bé A.W.H. 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. In: Ramsay A.T.S. (ed.), Oceanic micropaleontology. Academic Press, London, pp. 1–88.

    Google Scholar 

  • Beerling D.J. 1999. New estimates of carbon transfer to terrestrial ecosystems between the last glacial maximum and the Holocene. Terra Nova 11: 162–167.

    Article  CAS  Google Scholar 

  • Berger W.H. and Vincent E. 1986. Deep-sea carbonates: reading the carbon isotope signal. Geol. Rundschau. 75: 249–269.

    Article  CAS  Google Scholar 

  • Berger W.H., Killingley J.S. and Vincent E. 1978. Stable isotopes in deep sea carbonates: Box core ERDC-92 western equatorial Pacific. Oceanol. Acta. 1: 203–216.

    CAS  Google Scholar 

  • Berger W.H., Lange C.B. and Weinheinmer A. 1997. Silica depletion of the thermocline in the eastern North Pacific during glacial conditions. Geology 25: 619–622.

    Article  CAS  Google Scholar 

  • Bidigare R.R., Fluegge A., Freeman K.H., Hanson K.L., Hayes J.M., Hollander D., Jasper J.P., King L.L., Laws E.A., Millero F.J., Pancost R.D., Popp B.N. Steinberg P.A. and Wakeham S.G. 1997. Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae. Global Biogeochem. Cy.11: 279–292.

    Article  CAS  Google Scholar 

  • Bird M.I.,Lloyd J. and Farquhar G.D. 1994. Terrestrial carbon storage at the LGM. Nature 371: 566.

    Article  CAS  Google Scholar 

  • Brovkin V., Hofmann M. Bendtsen J. and Ganopolski A. 2002. Ocean biological could control atmospheric δ13C during glacial-interglacial cycles. Geochem. Geophys. Geosyst. 3: doi: 10.1029/2001GC000270.

    Google Scholar 

  • Boyle E.A. 1995. Limits on benthic foraminiferal chemical analyses as precise measures of environmental properties. J. Foramin. Res. 25: 4–13.

    Article  Google Scholar 

  • Boyle E. 1998. Pumping iron makes thinner diatoms. Nature 393: 733–734.

    Article  CAS  Google Scholar 

  • Brandes J.A. and Devol A.H. 2002. A global marine fixed nitrogen budget: implications for Holocene nitrogen cycling. Global Biogeochem. Cy. 16: 1120. doi: 10.1029/2001GB001856.

    Article  CAS  Google Scholar 

  • Brandriss M.E., O'Neil J.R., Edlund M.B. and Stoermer E.F. 1998. Oxygen isotope fractionation between diatomaceous silica and water. Geochim. Cosmochim. Ac. 62: 1119–1125.

    Article  CAS  Google Scholar 

  • Broadmeadow M.S.J. and Griffiths H. 1993. Carbon isotope discrimination and the coupling of CO2 fluxes within forest canopies. In: Ehleringer J.R., Hall A.E. and Farquhar G.D. (eds), Stable isotopes and plant carbon-water relations. Academic Press, San Diego, pp. 109–129.

    Google Scholar 

  • Broecker W.S. 1982. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11: 151–197.

    Article  Google Scholar 

  • Broecker W.S. and Peng T-H. 1982. Tracers in the Sea. Eldigino Press, New York. pp. 690

    Google Scholar 

  • Broecker W.S. and Denton G.H. 1989. The role of ocean-atmosphere reorganisation in glacial cycles. Geochim. Cosmochim. Ac. 53: 2465–2501.

    CAS  Google Scholar 

  • Broecker W.S. and Peng T-H. 1993. What caused the glacial to interglacial CO2 change. In: Heimann M. (ed.), The global carbon cycle, NATO ASI Series, Vol. 15. Springer, Berlin, pp. 95–115.

    Google Scholar 

  • Broecker W. and Henderson G.M. 1998. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography 13: 352–364.

    Google Scholar 

  • Bronk D.A. and Ward B.B. 1999. Gross and net nitrogen uptake and DON release in the euphotic zone of Monterey Bay, California. Limnol. Oceanogr. 44: 573–585.

    Article  CAS  Google Scholar 

  • Brook E.J., Harder S. Severinghaus J. and Bender M. 1999. Atmospheric methane and millennial-scale climate change. In: Clark P.U., Webb R.S. and Keigwin L.D. (eds), Mechanisms of global climate change at millennial time scales. AGU Geophysical Monographs 112: 165–175.

    Google Scholar 

  • Brook E.J., Harder S., Severinghaus J. Steig E.J. and Sucher C.M. 2000. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem. Cy. 14: 559–572.

    Article  CAS  Google Scholar 

  • Brzezinski M.A., Pride C.J., Franck V.M., Sigman D.M., Sarmiento J.L., Matsumoto K., Gruber N. Rau G.H. and Coale K.H. 2002. A switch from Si(OH)4 to NO3 - depletion in the glacial Southern Ocean. Geophys. Res. Lett. 29: 1564. doi: 10.1029/2001GL014349.

    Article  Google Scholar 

  • Buffett B. A. 2000. Clathrate Hydrates. Annu. Rev. Earth Pl. Sc. 28: 477–507.

    CAS  Google Scholar 

  • Burns S. and Maslin M.A. 1999. Composition and circulation of bottom water in the western Atlantic Ocean during the last glacial, based on pore-water analyses from the Amazon Fan. Geology 27: 1011–1014.

    Article  CAS  Google Scholar 

  • Calder J.A. and Parker P.L. 1973. Geochemical implications of induced changes in 13C fractionation of blue-green algae. Geochim. Cosmochim. Ac. 37: 133–140.

    Article  CAS  Google Scholar 

  • Capone D.G. and Carpenter E.J. 1982. Nitrogen fixation in the marine environment. Science 217: 1140–1142.

    CAS  Google Scholar 

  • Cardinal D., Alleman L.Y. de Jong J., Ziegler K. and André L. 2003. Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J. Anal. Atom. Spectrom. 18: 213–218.

    Article  CAS  Google Scholar 

  • Cardinal D., Alleman L.Y., Dehairs F., Savoye N. Trull T.W. and Andre L. 2005. Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters. Global Biogeochem. Cy. 18: GB2007. doi: 10.1029/2004GB002364.

    Google Scholar 

  • Cerling T.E., Harris J.M., MacFadden B.J., Leakey M.G., Quade J. Eisenmann V. and Ehleringer J.R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153–158.

    Article  CAS  Google Scholar 

  • Chapman M. and Maslin M.A. 1999. Low latitude forcing of meridional temperature and salinity gradients in the North Atlantic and the growth of glacial ice sheets. Geology 27: 875–878.

    Google Scholar 

  • Charles C. and Fairbanks R. 1992. Evidence from Southern Ocean sediments for the effects of North Atlantic deep-water flux on climate. Nature 355: 416–419.

    Article  Google Scholar 

  • Chikaraishi Y. and Naraoka H. 2003. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63: 361–371.

    Article  CAS  Google Scholar 

  • Clark P.U. and Mix A.C. 2002. Ice sheet and sea level of the Last Glacial Period. Quaternary Sci. Rev. 21: 1–8.

    Article  Google Scholar 

  • Coccioni R., Fabbrucci L. and Galeotti S. 1993. Terminal Cretaceous deep-water benthic foraminiferal decimation, survivorship and recovery at Caravaca (SE Spain). Paleopelagos 3: 3–24.

    Google Scholar 

  • Cole J. 2001. A slow dance for El Niño. Science 291: 1496–1497.

    Article  CAS  Google Scholar 

  • Cole J. 2003. Holocene coral records: windows on tropical climate variability. In: Mackay A., Battarbee R., Birks J. and Oldfield F. (eds), Global Change in the Holocene. Arnold, London, pp. 168–184.

    Google Scholar 

  • Collister J.W., Rieley G., Stern B., Eglinton G. and Fry B. 1994. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org. Geochem. 21: 619–627.

    CAS  Google Scholar 

  • Craig H. and Gordon L.I. 1965. Isotope oceanography: deuterium and oxygen 18 variations in the ocean and the marine atmosphere. Symposium on Marine Geochemistry, University of Rhode Island, Occasional Publications 3: 277–374.

    Google Scholar 

  • Cranwell P.A. 1981. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Org. Geochem. 3: 79–89.

    Article  CAS  Google Scholar 

  • Criss R.E. 1999. Principles of stable isotope distribution. Oxford University Press, New York, 254 pp.

    Google Scholar 

  • Crosta X. and Shemesh A. 2002. Reconciling down core anticorrelation of diatom carbon and nitrogen isotopic ratios from the Southern Ocean. Paleoceanography 17: 1010. doi: 10.1029/2000PA000565.

    Article  Google Scholar 

  • Crowley T.J. 1995. Ice age terrestrial carbon changes revisited. Global Biogeochem. Cy. 9: 377–389.

    Article  CAS  Google Scholar 

  • Culver S.J. 2003. Benthic foraminifera across the Cretaceous-Tertiary (K-T) boundary: a review. Mar. Micropaleontol. 47: 177–226.

    Article  Google Scholar 

  • Curry W.B., J-C. Duplessy, Labeyrie L.D. and Shackleton N.J. 1988. Changes in the distribution of Σ13C of deep water δCO2 between the last glaciation and the Holocene. Paleoceanography 3: 327–337.

    Google Scholar 

  • Curry W.B., Ostermann, D.R., Guptha, M.V. and Ittekkot, V. 1992. Foraminiferal production and monsoonal forcing in the Arabian Sea: evidence from sediment traps. In: Summerhayes C.P., Prell W.L., Emeis K-C. (eds), Upwelling Systems: evolution since the early Miocene. Geological Society Special Publication 64, pp 93–106.

    Google Scholar 

  • Dansgaard W. and Tauber H. 1969. Glacial oxygen-18 content and Pleistocene ocean temperatures. Science 166: 499–502.

    CAS  Google Scholar 

  • Day S. and Maslin M.A. in press. Linking large impacts, gas hydrates and carbon isotope excursions through widespread sediment liquifaction and continental slope failure: the example of the K-T boundary: event. In: Kenkmann T., Horz F. and Deutsch A. (eds), Large meteorite impacts III. Geol. Soc. Am. Special Paper 384, pp. 239–259.

    Google Scholar 

  • de Garidel-Thoron T., Beaufort L., Bassinot F. and Henry P. 2004. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode. P. Natl. Acad. Sci. USA. 101: 9187–9192.

    Article  CAS  Google Scholar 

  • De Freitas A.S.W., McCulloch A.W. and Mclnnes A.G. 1991. Recovery of silica from aqueous silicate solutions via trialkyl or tetraalkylammonium silicomolybdate. Can. J. Chemistry. 69: 611–614.

    CAS  Google Scholar 

  • De La Rocha C.L. 2002. Measurement of silicon stable isotope natural abundances via multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochem. Geophys. Geosyst. 3: 1045. doi: 10.1029/2002GC000310.

    Article  Google Scholar 

  • De La Rocha C.L. 2003. Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology 31: 423–426.

    Article  CAS  Google Scholar 

  • De La Rocha C.L., Brzezinski M.A. and De Niro M.J. 1996. Purification, recovery and laserdriven fluorination of silicon from dissolved and particulate silica for the measurements of natural stable isotopes abundances. Anal. Chem. 68: 3746–3750.

    CAS  Google Scholar 

  • De La Rocha C.L., Brzezinski M.A. and DeNiro M.J. 1997. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim. Cosmochim. Ac. 61: 5051–5056.

    CAS  Google Scholar 

  • De La Rocha C.L., Brzezinski M.A., DeNiro M.J. and Shemesh A. 1998. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395: 680–683.

    Article  CAS  Google Scholar 

  • De La Rocha C.L., Brzezinski M.A. and DeNiro M.J. 2000. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim. Cosmochim. Ac. 64: 2467–2477.

    Article  CAS  Google Scholar 

  • Degens E., Guillard R., Sackett W. and Hellebust J. 1968. Metabolic fractionation of carbon isotopes in marine plankton 1, temperature and respiration experiments. Deep-Sea Res. 15: 1–9.

    CAS  Google Scholar 

  • Descolas-Gros C. and Fontugne M.R. 1985. Carbon fixation in marine phytoplankton: carboxylase activities and stable carbon isotope ratios; physiological and paleoclimatological aspects. Mar. Biol. 87: 1–6.

    Article  CAS  Google Scholar 

  • Deutsch C., Sigman D.M., Thunell R.C.Meckler A.N. and Haug G.H. 2004. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Global Biogeochem. Cy. 18: GB4012. doi: 10.1029/2003GB002189.

    Article  CAS  Google Scholar 

  • Dezileau L., Bareille G.Reyss J.L. and Lemoine F. 2000. Evidence for strong sediment redistribution by bottom currents along the southeast Indian ridge. Deep-Sea Research Pt. I. 47: 1899–1936.

    CAS  Google Scholar 

  • Dickens G.R. 2001. The potential volume of oceanic methane hydrates with variable external conditions. Org. Geochem. 32: 1132–1193.

    Article  Google Scholar 

  • Dickens G.R., Paull C.K. Wallace P. and the ODP Leg 164 Scientific Party. 1997. Direct measurements of in situ methane quantities in a large gas-hydrate reservoir. Nature 385: 426–428.

    Article  CAS  Google Scholar 

  • Ding T., Jiang S., Wan D., Li Y., Li J., Song H., Liu Z. and Yao X. 1996. Silicon Isotope Geochemistry. Geological Publishing House, Beijing, China, 125 pp.

    Google Scholar 

  • Ding T., Wan D., Wang C. and Zhang F. 2004. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China, Geochim. Cosmochim. Ac. 68: 205–216.

    CAS  Google Scholar 

  • Douthitt C.B. 1982. The geochemistry of the stable isotopes of silicon. Geochim. Cosmochim. Ac. 46: 1449–1458.

    Article  CAS  Google Scholar 

  • Dugdale R.C., Lyle M, Wilkerson P.P., Chai F. Barber R.T. and Peng T.-H. 2004. Influence of equatorial diatom processes on Si deposition and atmospheric CO2 cycles at glacial/interglacial timescales. Paleoceanography 19: PA3011. doi: 10.1029/2003PA000929.

    Article  Google Scholar 

  • Duplessy J.-C., Shackleton N.J., Matthews R.K., Prell W., Ruddiman W.F.Caralp M. and Hendy C.H. 1984. 13C record of benthic foraminifera in the last interglacial ocean: implications for the carbon cycle and the global deep water circulation. Quaternary Res. 21: 225–243.

    Article  Google Scholar 

  • J-C. Duplessy, Shackleton N.J., Fairbanks R.J., Labeyrie L.D., Oppo D. and Kallel N. 1988. Deepwater source variation during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3: 343–360.

    Google Scholar 

  • Duplessy J.-C., Labeyrie L., Juillet-Leclerc A., Maitre F., Duprat J. and Sarnthein M. 1991. Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum. Oceanol. Acta. 14: 311–324.

    CAS  Google Scholar 

  • Duplessy J.-C., Labeyrie L., Arnold M., Paterne M.Duprat J. and van Weering T. 1992 Changes in surface water salinity of the North Atlantic Ocean during the last deglaciation. Nature 358: 485–488.

    Article  CAS  Google Scholar 

  • Duplessy J.-C., Labeyrie L. and Waelbroeck C. 2002. Constraints on the ocean oxygen isotopic enrichment between the Last Glacial Maximum and the Holocene. Quaternary Sci. Rev. 21: 315–330.

    Article  Google Scholar 

  • Edwards R.L., Chen J.H. Ku T-L. and Wasserburg G.L. 1987. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals. Science 236: 1547–1553.

    CAS  Google Scholar 

  • Eglinton G. and Hamilton R.J. 1967. Leaf epicuticular waxes. Science 156: 1322–1334.

    CAS  Google Scholar 

  • Eglinton G., Hamilton R.J.Raphael R.A. and Gonzalez A.G. 1962. Hydrocarbon constituents of the wax coatings of plant leaves: Ataxonomic survey. Phytochemistry 1: 89–102.

    CAS  Google Scholar 

  • Eglinton G., Bradshaw S.A., Rosell A., Sarnthein M., Pflaumann U. and Tiedemann R. 1992. Molecular record of secular sea surface temperature changes on 100 year timescales for glacial terminations I, II, and IV. Nature 356: 423–425.

    Article  Google Scholar 

  • Ehleringer J.R., Cerling T.E. and Helliker B. 1997. C4-photosynthesis, atmospheric CO2 and climate. Oecologia 112: 285–299.

    Article  Google Scholar 

  • Elderfield H. and Ganssen G. 2000. Past temperature and deltal180 of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405: 442–445.

    CAS  Google Scholar 

  • Emiliani C. 1955. Pleistocene temperatures. J. Geol. 63: 538–578.

    Article  CAS  Google Scholar 

  • Emiliani C. 1971. The amplitude of Pleistocene climatic cycles at low latitudes and the isotopic composition of glacial ice. In: Turehian K.K. (ed.), The late Cenozoic glacial ages. Yale University, New Haven, Connecticut, pp. 183–197.

    Google Scholar 

  • Epstein S. and Taylor H.P. 1970a. The concentration and isotopic composition of hydrogen, carbon and silicon in Apollo 11 lunar rocks and minerals. Proceedings of the Apollo 11 lunar science conference. 2: 1085–1096.

    CAS  Google Scholar 

  • Epstein S. and Taylor H.P. 1970b. Stable isotopes, rare gases, solar wind and spallation products. Science 167: 533–535.

    CAS  Google Scholar 

  • Epstein S., Buchsbaum R., Lowenstam H.A. and Urey H.C. 1953. Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 64: 1315–1325.

    CAS  Google Scholar 

  • Erez J. and Honjo S. 1981 Comparison of isotopic composition of planktonic foraminifera in plankton tows, sediment traps and sediments. Palaeogeogr. Palaeocl. 33: 129–156.

    Google Scholar 

  • Ettwein V. 2005. South American palaeoclimate reconstruction. PhD, thesis University College London, London.

    Google Scholar 

  • Fairbanks R.G. 1989. A 17,000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342: 637–642.

    Article  Google Scholar 

  • Fairbanks R., Sverdlove M., Free R., Wiebe P. and Bé A. 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature 298: 841–843.

    Article  CAS  Google Scholar 

  • Falkowski P.G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387: 272–275.

    Article  CAS  Google Scholar 

  • Farrell J.W., Pedersen T.F. Calvert S.E. and Nielsen B. 1995. Glacial-interglacial changes in nutrient utlization in the equatorial Pacific Ocean. Nature 377: 514–517.

    Article  CAS  Google Scholar 

  • Faure H., Adams J.M., Debenay J.P., Faure-Denard L., Gant D.R., Pirazzoli P.A., Thomassin B. Velichko A.A. and Zazo C. 1996. Carbon storage and continental land surface change since the last glacial maximum. Quaternary Sci. Rev. 15: 843–849.

    Article  Google Scholar 

  • Fillon R.H. and Williams D.F. 1984. Dynamics of meltwater discharge from Northern Hemisphere ice sheet during the last deglaciation. Nature 310: 674–676.

    Article  CAS  Google Scholar 

  • Fontugne M.R. and Duplessy J-C. 1986. Variations of the monsoon regime during the upper Quaternary: evidence from carbon isotopic record of organic matter in North Indian ocean sediment cores. Palaeogeogr. Palaeocl. 56: 69–88.

    CAS  Google Scholar 

  • Francois L. and Godderis Y. 1998. Isotopic constraints on the Cenozoic evolution of the carbon cycle. Chem. Geol. 145: 177–212.

    CAS  Google Scholar 

  • Francois L.M., Delire C., Warnant P. and Munchoven G. 1998. Modelling the glacial-interglacial changes in continental biosphere. Global Planet. Change 16–17: 37–52.

    Google Scholar 

  • Francoise R., Bacon P. and Altabet M. 1993. Glacial/interglacial changes in sediment rain rate in the SW Indian Sector of Subantarctic waters as recorded by 230Th, 231Pa, U, and 15N. Paleoceanography 8: 611–629.

    Google Scholar 

  • Francoise R., Altabet M.A., Sigman D.M., Bacon M.P., Frank M., Bohrmann G., Bareille G. and Labeyrie L. 1997. Contribution of Southern Ocean surface water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389: 929–935.

    Google Scholar 

  • Freeman K.H., Hayes J.M. Trendel J.M. and Albrecht P. 1990. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343: 254–256.

    Article  CAS  Google Scholar 

  • Friedlingstein C., Delire C. Muller J.F. and Gerard J.C. 1992. The climate induced variation of the continental biosphere: a model simulation of the last glacial maximum. Geophys. Res. Lett. 19: 897–900.

    Google Scholar 

  • Friedlingstein C., Prentice K.C., Fung I.Y. John J.G. and Brasseur G.P. 1995. Carbon-biosphere-climate interaction in the last glacial maximum climate. J. Geophys. Res. 100: 7203–7221.

    Article  CAS  Google Scholar 

  • Gagan M.K., Ayliffe L.K., Hopley D., Cali J.A., Mortimer G.E., Chappell J., McCulloch M.T. and Head M.J. 1998. Temperature and surface water balance of the mid-Holocene tropical western Pacific. Science 279: 1014–1018.

    Article  CAS  Google Scholar 

  • Gajewski K., Viau A., Sawada M., Atkinson D. and Wilson S. 2001. Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years. Global Biogeochem. Cy. 15: 297–310.

    Article  CAS  Google Scholar 

  • Ganeshram R.S., Pedersen T.F. Calvert S.E. and Murray J.W. 1995. Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature 376: 755–758.

    Article  CAS  Google Scholar 

  • Ganeshram R.S., Pedersen T.F., Calvert S.E. McNeill G.W. and Fontugne M.R. 2000. Glacial-interglacial variability in denitrification in the world's ocean: Causes and consequences. Paleoceanography 15: 316–376.

    Article  Google Scholar 

  • Ganeshram R.S., Pedersen T.F. Calvert S.E. and Francois R. 2002. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature 415: 156–159

    Article  CAS  Google Scholar 

  • Ganssen G. 1983. Dokumentation von küstennahem auftrieb anhand stabiler Isotopen in rezenten foraminiferen vor Nordwest-Afrika. Meteor Forsch. Ergebnisse C 37: 1–46.

    CAS  Google Scholar 

  • Ganssen G. and Sarnthein M. 1983. Stable isotope composition of foraminifera: the surface and bottom waters record of coastal upwelling. In: Suess A.E. and Thiede J. (eds), Coastal Upwelling: its sediment record, Part A. Plenum, New York, pp. 99–121.

    Google Scholar 

  • Garlick G.D. 1974. The stable isotopes of oxygen, carbon, hydrogen in the marine environment. In: Goldberg G.D. (ed.), The Sea. John Wiley & Sons, New York, pp. 393–425.

    Google Scholar 

  • GEOSECS. 1987. Atlantic, Pacific and Indian Ocean expeditions. Shorebased data and graphics. Vol. 7. In: östlund H.G., Craig H., Broecker W.S. and Spencer D. (eds), I.D.O.E. National Science Foundation, Washington, USA, 230 pp.

    Google Scholar 

  • Goldman J.C. 1993. Potential role of large oceanic diatoms in new primary production. Deep-Sea Res. Pt. I. 40: 159–168.

    Google Scholar 

  • Grootes P.M. 1993. Interpreting continental oxygen isotopes records. In: Swart P.K., Lohmann K.C., McKenzie J. and Savin S. (eds), Climate change in continental isotope records. AGU Geophysical Monograph. 78: 37–46.

    Google Scholar 

  • Gruber N. and Sarmiento J.L. 1997. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cy. 11: 235–266.

    Article  CAS  Google Scholar 

  • Haimson M. and Knauth L.P. 1983. Stepwise fluorination –a useful approach for the isotopic analysis of hydrous minerals. Geochim. Cosmochim. Ac. 47: 1589–1595.

    Article  CAS  Google Scholar 

  • Haq B. 1998. Natural gas hydrates: searching for the long-term climate and slope stability records. In: Henriet J.P. and Mienert J. (eds), Gas hydrates: relevance to world margin stability and climate change. Geological Society of London Special Publication 137, The Geological Society, London, pp. 303–318.

    Google Scholar 

  • Haug G.H. and Tiedemann R. 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393: 673–675.

    Article  CAS  Google Scholar 

  • Haug G.H., Sigman D.M., Tiedemann R.Pedersen T.F. and Sarnthein M. 1999. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401: 779–782.

    Article  CAS  Google Scholar 

  • Haug G.H., Ganopolski A., Sigman D.M., Rosell-Mele A., Swann G.E.A., Tiedemann R., Jaccard S, Bollmann J., Maslin M.A.Leng M.J. and Eglinton G. 2005. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature 433: 821–825.

    Article  CAS  Google Scholar 

  • Haupt B. and Seidov D. 2001. Warm deep-water ocean conveyor during Cretaceous times. Geology 29: 295–298.

    Article  CAS  Google Scholar 

  • Hays P.D and Grossman E.L. 1991. Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology 19: 441–444.

    Article  CAS  Google Scholar 

  • Hays J.D., Imbrie J. and Shackleton N.J. 1976. Variations in the Earth's orbit: Pacemaker of the Ice Ages. Science 194: 1121–1132.

    Google Scholar 

  • Hemleben Ch., Spindler M. and Anderson O.R. 1988. Modern Planktonic Foraminifera. Spinger-Verlag, New York, 363 pp.

    Google Scholar 

  • Hemming N.G. and Hanson G.N. 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Ac. 56: 537–543.

    Article  CAS  Google Scholar 

  • Hemming N.G., Reeder R.J. and Hanson G.N. 1995. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim. Cosmochim. Ac. 59: 371–379.

    CAS  Google Scholar 

  • Hendy E.J., Gagan M.K., Alibert C.A., McCulloch M.T.Lough J.M. and Isdale P.J. 2002. Abrupt decreased in tropical Pacific Sea surface salinity at the end of the Little Ice Age. Science 295: 1511–1514.

    Article  CAS  Google Scholar 

  • Henriet J-P. and Mienert J. (eds) 1998. Gas Hydrates: Relevance to world margin stability and climate change. Geological Society of London Special Publication 137, The Geological Society, London, 338 pp.

    Google Scholar 

  • Hoefs J. 1997. Stable isotope geochemistry. Spinger-Verlag, Berlin, 213 pp.

    Google Scholar 

  • Holmes E.M., Muller P.J., Schneider R.R., Segl M., Patzold J. and Wefer G. 1996. Stable nitrogen isotopes in Angola Basin surface sediments. Mar. Geol. 134: 1–12.

    Article  CAS  Google Scholar 

  • Holmes M.E., Muller P.J., Schneider R.R., Segl M. and Wefer G. 1998. Spatial variations in euphotic zone nitrate utlization based in δ15N in surface sediments. Geo-Marine Letter. 18: 58–65.

    CAS  Google Scholar 

  • Holmes M.E., Eichner C., Struck U. and Wefer G. 1999. Reconstruction of surface water nitrate utilization using stable nitrogen isotopes in sinking particles and sediments. In: Fischer G. and Wefer G. (eds) , Use of proxies in paleoceanography. Springer, Berlin, pp. 447–468.

    Google Scholar 

  • Hönisch B. and Hemming N.G. 2004. Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells: Partial dissolution and shell size effects. Paleoceanography 19: PA4010. doi: 10.1029/2004PA001026.

    Google Scholar 

  • Honisch B., Bijma J., Russell A.D., Spero H.J., Palmer M.R. Zeebe R.E. and Eisenhauer A. 2003. The influence of symbiont photosynthesis on the boron isotopic composition of foraminifera shells. Mar. Micropaleontol. 49: 87–96.

    Article  Google Scholar 

  • Hönisch B., Hemming N.G., Grottoli A.G., Amat A., Hanson G.N. and Buma J. 2004. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochim. Cosmochim. Ac. 68: 3675–3685.

    Google Scholar 

  • Houghton R.A. 2004. The contemporary carbon cycle. In: Schlesinger W.H. (ed.), Treatise on Geochemistry, Volume 8: Biogeochemistry. Elsevier, Amsterdam, pp. 473–513.

    Google Scholar 

  • Hughen K., Eglinton T.E., Xu L. and Makou M. 2004. Abrupt Tropical Vegetation Response to Rapid Climate Changes. Science 304: 1955–1959.

    Article  CAS  Google Scholar 

  • Hutchins D.A. and Bruland K.W. 1998. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling zone. Nature 393: 561–564.

    Article  CAS  Google Scholar 

  • Imbrie J. and Kipp N.G. 1971. A new micropaleontological method for quantitative paleoclimatology. In: Turekian K.K. (ed.), Late Cenozoic Glacial Ages. Yale University Press, New Haven, Connecticut, pp. 71–182.

    Google Scholar 

  • Imbrie J., Hays J.D., Martinson D.G., Mclntyre A., Mix A.C., Morley J.J., Pisias N.G. Prell W.L. and Shackleton N.J. 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger A., Imbrie J., Hays J., Kugla G. and Satzmann B. (eds), Milankovitch and climate. Reidel Publishing Company, Dordrecht, pp. 269–305.

    Google Scholar 

  • Ivany L.C. and Salawitch R.J. 1993. Carbon isotopic evidence for biomass burning at the K-T boundary. Geology 21: 487–490.

    Article  CAS  Google Scholar 

  • Jasper J.P. and Hayes J. 1990. A carbon isotope record of CO2 level during the late Quaternary. Nature 347: 462–464.

    Article  CAS  Google Scholar 

  • Jasper J.P. and Gagosian R.B. 1990. The sources and deposition of organic matter in Late Quaternary Pigmy Basin, Gulf of Mexico. Geochim. Cosmochim. Ac. 54: 1117–1132.

    Article  CAS  Google Scholar 

  • Jasper J.P. Mix A.C., Prahl F.G. and Hayes J.M. 1994. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years. Paleoceanography 6: 781–798.

    Google Scholar 

  • Jennings A.E. and Weiner N.J. 1996. Environmental change on eastern Greenland during the last 1300 years: Evidence from formainifera and lithofacies in Nansen Fjord. Holocene 6: 179–191.

    Google Scholar 

  • Juillet-Leclerc A. and Labeyrie L. 1987. Temperature dependence of the oxygen isotopic fractionation between diatom silica and water. Earth Planet. Sc. Lett. 84: 69–74.

    Google Scholar 

  • Kasemann S.A., Hawkesworth C.J., Prave A.R. Fallick A.E. and Pearson P.N. 2005. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth Planet. Sc. Lett. 231: 73–86.

    CAS  Google Scholar 

  • Kaiho H., Kajiwara Y., Tazaki K., Ueshima M., Takeda N., Kawahata H., Arinobu T., Ishiwatari R.Hirai A. and Lamolda M.A. 1999. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: their decrease, subsequent warming, and recovery. Paleoceanography 14: 511–524.

    Article  Google Scholar 

  • Kakihana H., Kotaka M., Satoh S., Nomura M. and Okamoto M. 1977. Fundamental studies on the ion-exchange of boron isotopes. B. Chem. Soc. Jpn. 50: 158–163.

    Article  CAS  Google Scholar 

  • Kaplan J., Prentice I.C.Knorr W. and Valdes P.J. 2002. Modelling the dynamics of terrestrial carbon storage since the LGM. Geophys. Res. Lett. 29: 2074. doi: 10.1029/2002GL015230.

    Google Scholar 

  • Karl D., Letelier R., Tupas L., Dore J., Christian J. and Hebel D. 1997. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388: 533–539.

    Article  CAS  Google Scholar 

  • Kastner T.P. and Goñi M.A. 2003. Constancy in the vegetation of the Amazon basin during the late Pleistocene. Geology 31: 291–294.

    Article  CAS  Google Scholar 

  • Kennett J.P. and Fackler-Adams B.N. 2000. Relationship of clathrate instability to sediment deformation in the upper Neogene of California. Geology 28: 215–215.

    Article  CAS  Google Scholar 

  • Kennett J.P, Cannariato K.G. Hendy I.L. and Behl R.J. 2000. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288: 128–133.

    Article  CAS  Google Scholar 

  • Kennett J., Cannariato K.G. Hendy I.L. and Behl R.J. 2003. Methane hydrates in Quaternary climate change: The clathrate gun hypothesis: American Geophysical Union, 216 pp.

    Google Scholar 

  • Kienast M. 2000. Unchanged nitrogen isotope composition of organic matter in the South China Sea during the last climatic cycle: Global implications. Paleoceanography 15: 244–253.

    Article  Google Scholar 

  • Kolattukudy P.E. 1976. The Chemistry and Biochemistry of Natural Waxes. Elsevier, Netherlands, 459 pp.

    Google Scholar 

  • Kroon D. and Ganssen G. 1989. Northern Indian ocean upwelling cells and the stable isotope composition of living foraminifera. Deep-sea Res. 36: 1219–1236.

    Article  CAS  Google Scholar 

  • Kucera M, Weinel M, Kiefer T., Pflaumann U., Hayes A., Weinelt M., Chen, M-T., Mix A.C., Barrows T.T., Cortijo E., Duprat J., Juggins S. and Waelbroeck C. 2005a. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quaternary Sci. Rev. 24: 951–998.

    Google Scholar 

  • Kucera M., Rosell-Melé A., Schneider R., Waelbroeck C. and Weinelt M. 2005b. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO) Quaternary Sci. Rev. 24: 813–819.

    Google Scholar 

  • Kump L.R. and Arthur M.A. 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161: 181–198.

    Article  CAS  Google Scholar 

  • Kuroyanagi A. and Kawahata H. 2004. Vertical distribution of living planktonic foraminifera in the seas around Japan. Mar. Micropaleontol. 53: 173–196.

    Article  Google Scholar 

  • Kvenvolden K.A. 1993. Gas hydrates -geological perspective and global change. Rev. Geophys. 31: 173–187.

    Article  Google Scholar 

  • Kvenvolden K.A. 1998. A primer on the geological occurrence of gas hydrate. In: Henriet J.P. and Mienert J. (eds), Gas hydrates: relevance to world margin stability and climate change. Geological Society of London Special Publication 137, The Geological Society, London, pp. 9–30.

    Google Scholar 

  • Labeyrie L.D. 1974. New approach to surface seawater paleotemperatures using (18)O/(16)O ratios in silica of diatom frustules. Nature 248: 40–42.

    Article  CAS  Google Scholar 

  • Labeyrie L.D. and Juillet A. 1982. Oxygen isotopic exchangeability of diatom valve silica; interpretation and consequences for palaeoclimatic studies. Geochim. Cosmochim. Ac. 46: 967–975.

    Article  CAS  Google Scholar 

  • Labeyrie L.D., Duplessy, J-C., Duprat J., Juillet-Leclerc A., Moyes J., Michel E.Kallel N. and Shackleton N.J. 1992. Changes in the vertical structure of the North Atlantic Ocean between glacial and modern times. Quaternary Sci. Rev. 11: 401–413.

    Article  Google Scholar 

  • Lamb A.L., Leng M.J.Sloane H.J. and Telford R. J. In press. A comparison of the palaeoclimatic signals from diatom oxygen isotope ratios and carbonate oxygen isotope ratios from a low latitude crater lake. Palaeogeogr. Palaeocl.

    Google Scholar 

  • Lambeck K. and Chappell J. 2001. Sea level change through the last glacial cycle. Science 292: 679–686.

    Article  CAS  Google Scholar 

  • Laws E.A., Popp B.N., Bidigare R.R., Riebesell U., Burkhardt S. and Wakeham S. 2001. Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algae. Geochem. Geophys. Geosyst. 2: doi.2000GC000057.

    Google Scholar 

  • Lemarchand D., Gaillardet J. Lewin E. and Allegre C.J. 2000. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408: 951–954.

    Article  CAS  Google Scholar 

  • Lemarchand D., Gaillardet J.Lewin E. and Allegre C.J. 2002. Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chem. Geol. 190: 123–140.

    Article  CAS  Google Scholar 

  • Leng M., Barker P., Greenwood P., Roberts N. and Reed J. 2001. Oxygen isotope analysis of diatom silica and authigenic calcite from Lake Pinarbasi, Turkey. J. Paleolimnol. 25: 343–349.

    Article  Google Scholar 

  • Leng M.J., Lamb A.L, Heaton T.H.E, Marshall J.D., Wolfe B.B., Jones M.D.Holmes J.A. and Arrowsmith C. This volume. Isotopes in lake sediments. In: Leng M.J. (ed.), Isotopes in palaeoenvironmental Research. Springer, Dordrecht.

    Google Scholar 

  • Lücke A., Moschen R. and Schleser G.H. 2005. High-temperature carbon reduction of silica: a novel approach for oxygen isotope analysis of biogenic opal. Geochim. Cosmochim. Ac. 69: 1423–1433.

    Google Scholar 

  • Lynch-Stieglitz J. 2004. Tracers of past ocean circulation. In: Elderfield H. (ed.), Treatise on Geochemistry, Volume 6: The Oceans and Marine Geochemistry. Elsevier, Amsterdam, pp. 433–453.

    Google Scholar 

  • Lynch-Stieglitz J., Curry W., Slowey N. and Schmidt G. 1999a. The overturning of the glacial Atlantic: A view from the top. In: Abrantes F. and Mix A. (eds), Reconstructing Ocean History: A window into the future. Kluwer Academic, New York, pp. 7–32.

    Google Scholar 

  • Lynch-Stieglitz J., Curry W. and Slowey N. 1999b. Weaker Gulf Stream in the Florida Straits during the Last Glacial Maximum. Nature 402: 644–648.

    Article  CAS  Google Scholar 

  • MacDonald G.J. 1990. Role of methane clathrates in past and future climates. Climatic Change 16: 247–281.

    Article  Google Scholar 

  • Mackensen A., Hubberten H.W., Bickert T.Fischer G. and Filtterer D.K. 1993. The δ13C in benthic foraminifera tests of Fontbotia wuellerstorfi relative to the δ13C of dissolved inorganic carbon in Southern Ocean deep Water: Implications for ocean circulation models. Paleoceanography 8: 587–610.

    Google Scholar 

  • McCorckle D.C., Keigwin L.D.Corliss B.H. and Emerson S.R. 1990. The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera. Paleoceanography 5: 161–185.

    Google Scholar 

  • McElroy M.B. 1983. Marine biological controls on atmospheric CO2 and climate. Nature 302: 328–329.

    Article  CAS  Google Scholar 

  • Martinson D.G., Pisias N.G., Hays J.D., Imbrie J.Moore T.C. Jr. and Shackleton N.J. 1987. Age dating and the orbital theory of ice ages: development of a high-resolution 0 to 300,000 years chronostratigraphy. Quaternary Res. 27: 1–29.

    Article  CAS  Google Scholar 

  • Maslin M.A. and Burns S.J. 2000. Reconstruction of the Amazon Basin effective moisture availability over the last 14,000 years. Science 290: 2285–2287.

    CAS  Google Scholar 

  • Maslin M.A. and Thomas E. 2003. Balancing the deglacial global carbon budget: the hydrate factor. Quaternary Sci. Rev. 22: 1729–1736.

    Article  Google Scholar 

  • Maslin M.A., Shackleton N.J. and Pflaumann U. 1995a. Temperature, salinity and density changes in the Northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation and climatic rebounds. Paleoceanography 10: 527–544.

    Article  Google Scholar 

  • Maslin M.A., Adams J., Thomas E.Faure H. and Haines-Young R. 1995b. Estimating the carbon transfer between the oceans, atmosphere and the terrestrial biosphere since the last glacial maximum. Terra Nova 7: 358–366.

    Google Scholar 

  • Maslin M.A., Haug G.H., Sarnthein M. and Tiedemann R. 1996. The progressive intensification of northern hemisphere glaciation as seen from the North Pacific. Geologische Rundschau. 85: 452–465.

    Article  Google Scholar 

  • Maslin M.A., Mikkelsen N., Vilela C. and Haq B. 1998. Sea-level and gas hydrate controlled catastrophic sediment failures of the Amazon Fan. Geology 26: 1107–1110.

    Article  Google Scholar 

  • Maslin M.A., Pike J., Stickley C. and Ettwein V. 2003. Evidence of Holocene climate variability from marine sediments. In: Mackay A.W., Battarbee R., Birks J. and Oldfield F. (eds), Global Change in the Holocene. John Wiley, London, pp. 185–209.

    Google Scholar 

  • Maslin M.A., Vilela C.Mikkelsen N. and Grootes P. In press. Causation of the Quaternary catastrophic failures of the Amazon Fan deduced from stratigraphy and benthic foraminiferal assemblages. Quaternary Sci. Rev.

    Google Scholar 

  • Mataliotaki I., De La Rocha C.L., Passow U. and Wolf-Gladrow D. 2003. Impact of the pH-dependent speciation of silicic acid on the silicon isotope composition of diatoms. Geophysical Research Abstracts. 5: www.cosis.net/abstracts/EAE03/09375/EAE03-J-09375.pdf

    Google Scholar 

  • Matheney R.K. and Knauth L.P. 1989. Oxygen-isotope fractionation between marine biogenic silica and seawater. Geochim. Cosmochim. Ac. 53: 3207-3214.

    Article  CAS  Google Scholar 

  • Matsumoto R., Watanabe Y., Satoh M., Okada H., Hiroki Y. Kawasaki M. and the ODP Leg 164 Shipboard Scientific Party. 1996. Distribution and occurrence of marine gas hydrates -preliminary results of ODP Leg 164: Blake Ridge Drilling. Journal of the Geological Society of Japan. 102: 932–944.

    CAS  Google Scholar 

  • Matsumoto K., Sarmiento J.L. and Brzezinski M.A. 2002. Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO2. Global Biogeochem. Cy. 16: 1031. doi: 10.1029/2001GB001442.

    Article  CAS  Google Scholar 

  • Melosh H.J., Schneider N.M., Zahnle K. and Latham D. 1990. Ignition of global wildfires at the Cretaceous/Tertiary boundary. Nature 350: 251–254.

    Google Scholar 

  • Mikkelsen N., Labeyrie L. and Berger, W.H. 1978. Silica oxygen in diatoms: a 20,000 yr record in deep-sea sediments. Nature 271: 536–538.

    Article  CAS  Google Scholar 

  • Milankovitch M.M. 1949. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Sciences, Special publication 132, Section of Mathematical and Natural Sciences, Belgrade, 633 pp.

    Google Scholar 

  • Milligan A.J., Varela D.E. Brzezinski M.A. and Morel F.M.M. 2004. Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO2. Limnol. Oceanogr. 49: 322–329.

    Article  CAS  Google Scholar 

  • Mix A. and Ruddiman W.F. 1984. Oxygen isotope analyses and Pleistocene Ice Volumes. Quaternary Res. 21: 1–20.

    Article  CAS  Google Scholar 

  • Mix A. and Fairbanks R. 1985. North Atlantic surface-ocean control of Pleistocene deep-ocean circulation. Earth Planet. Sc. Lett. 73: 231–243.

    CAS  Google Scholar 

  • Montoya J.P. 1994. Nitrogen isotope fractionation in the modern ocean: implications for sedimentary record. NATO ASI Series, Vol 17, Springer, Berlin, pp. 259–279.

    Google Scholar 

  • Montoya J.P. and McCarthy J.J. 1995. Isotope fractionation during nitrate uptake by marine phytoplankton growth in continuous culture. J. Plankton. Res. 17: 439–464.

    CAS  Google Scholar 

  • Mopper K. and Garlick G.D. 1971. Oxygen isotope fractionation between biogenic silica and ocean water. Geochim. Cosmochim. Ac. 35: 1185–1187.

    Article  CAS  Google Scholar 

  • Morley D.W., Leng M.J., Mackay A.W., Sloane H.J.Rioual P. and Battarbee R.W. 2004. Cleaning of lake sediment samples for diatom oxygen isotope analysis. J. Paleolimnol. 31: 391–401.

    Article  Google Scholar 

  • Morris I. 1980. Paths of carbon assimilation in marine phytoplankton. In: Falkowski P. (ed.), Primary Productivity of the Sea. Plenum, New York, pp. 139–159.

    Google Scholar 

  • Mortlock R.A., Charles C.D., Froelich P.N., Zibello M.A., Saltzman J.Hays J.D. and Burckle L.H. 1991. Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351:220–223.

    Article  Google Scholar 

  • Mulitza S., Durkoop A., Hale W.Wefer G. and Niebler H.S. 1997. Planktonic foraminifera as recorders of past surface water stratification. Geology 25: 335–338.

    Article  CAS  Google Scholar 

  • Müller P.J., Erenkeuser H. and Grafenstein R. 1983. Glacial interglacial cycles in ocean productivity inferred from organic carbon content in eastern North Atlantic sediment cores. In: Thiede J. and Suess E. (eds), Coastal Upwelling: Its sediment record (Part B). Plenum Press, New York, pp. 365–398.

    Google Scholar 

  • Naqvi S.W.A., Yoshinari T., Brandes J.A., Devol A.H., Jayakumar D.A., Narvekar P.V. Altabet M.A. and Codispoti L.A. 1998. Nitrogen isotopic studies in the suboxic Arabian Sea. P. Indian As-Earth. 107: 367–378.

    CAS  Google Scholar 

  • Nelson D.A. and Smith W.O. Jr 1986. Phytoplankton bloom dynamics of the western Ross Sea Ice edge II. Mesoscale cycling of nitrogen and silicon. Deep-Sea Res. 33: 1389–1412.

    CAS  Google Scholar 

  • Nelson D.M., Treguer P., Brzezinski M.A., Leynaert A. and Quéguiner B. 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cy. 9: 359–372.

    Article  CAS  Google Scholar 

  • Niebler H-S., Hubberten H-W. and Gersonde R. 1999. Oxygen isotope values of planktonic foraminifera: a tool for the reconstruction of surface water stratification. In: Fischer G. and Wefer G. (eds), Use of proxies in Paleoceanography. Springer, Berlin, pp. 165–189.

    Google Scholar 

  • Nimer N.A. and Merrett M.J. 1996. The development of a CO2-concentrating mechanism in Emiliania huxleyi. NewPhytol. 133: 383–389.

    CAS  Google Scholar 

  • Nimer N.A., Dixon G.K. and Merrett M.J. 1992. Utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi (Lohmann) Kamptner. New Phytol. 120: 153–158.

    CAS  Google Scholar 

  • Nisbet E.G. 1990. The end of the ice age. Can. J. Earth Sci. 27: 148–157.

    Article  Google Scholar 

  • Nisbet E.G. 1992. Sources of atmospheric CH4 in early postglacial time. J. Geophys. Res. 97: 12,859–12,867.

    CAS  Google Scholar 

  • Norris R.D., Klaus A. and Kroon D. 2001. Mid-Eocene deep water, the late Paleocene thermal maximum and continental slope mass wasting during the Cretaceous-Palaeogene impact. In: Kroon D., Norris R.D. and Klaus A. (eds), Western North Atlantic Paleogene and Cretaceous Paleoceanography. Geological Society of London Special Publication 183, The Geological Society, London, pp. 23–28.

    Google Scholar 

  • O'Neil J., Clayton R. and Mayeda T. 1969. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 51: 5547–5558.

    Article  Google Scholar 

  • Otto D., Rasse D., Kaplan J., Warnant P. and Francois L. 2002. Biospheric carbon stocks reconstructed at the Last Glacial maximum. Global Planet. Change 33: 117-138.

    Article  Google Scholar 

  • Pagani M., Freeman K.H. and Arthur M.A. 1999b. Late Miocene atmospheric CO2 concentrations and the expansion of C4 gasses. Science 185: 876-879.

    Google Scholar 

  • Pagani M., Arthur M.A. and Freeman K.H. 1999a The Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14: 273–292.

    Article  Google Scholar 

  • Pagani M., Freeman K.H., Ohkouchi N. and Caldeira K. 2002. Comparison of water column CO2aq with sedimentary alkenone-based estimates: A test of the alkenone-CO2 proxy. Paleoceanography 17: 1069. doi: 10.1029/2002PA000756.

    Article  Google Scholar 

  • Pagani M., Lemarchand D., Spivack A. and Gaillardet J. 2005. A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates. Geochim. Cosmochim. Ac. 69: 953-961.

    Article  CAS  Google Scholar 

  • Pahnke K., Zahn R., Elderfield H. and Schulz M. 2003. 340,000-year centennial-scale marine record of Southern Hemisphere climatic oscillation. Science 301: 948–952.

    Article  CAS  Google Scholar 

  • Palmer M.R., Pearson P.N. and Cobb S.J. 1998. Reconstructing past ocean pH-depth profiles. Science 282: 1468–1471.

    Article  CAS  Google Scholar 

  • Palmer M.R. and Pearson P.N. 2003 A 23,000 year record of surface water pH and pCO2 in the Western Equatorial Pacific Ocean. Science 300: 480–482.

    Article  CAS  Google Scholar 

  • Pahlow M. and Riebesell U. 2000. Temporal changes in deep ocean Redfield ratios. Science 287: 831–833.

    Article  CAS  Google Scholar 

  • Pancost R. and Pagani, M. in press. Controls on the Carbon Isotopic Compositions of Lipids in Marine Environments. In Volkman et al (eds).

    Google Scholar 

  • Paull C.K., Usser W. and Dillon W.P. 1991. Is the extent of glaciation limited by marine gas hydrates? Geophys. Res. Lett. 18: 432–434.

    Google Scholar 

  • Paull C.K., Brewer P.G.Ussler W. Ill, Peltzer E.T., Rehder G. and Clague D. 2003. An experiment demonstrating that marine slumping is a mechanism to transfer methane from seafloor gas-hydrate deposits into the upper ocean and atmosphere. Geo-Mar. Lett. 22: 198–203.

    CAS  Google Scholar 

  • Pearson P.N. and Palmer M.R. 1999. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science 284: 1824–1826.

    Article  CAS  Google Scholar 

  • Pearson P.N. and Palmer M.R. 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406: 695–699.

    Article  CAS  Google Scholar 

  • Pearson P.N. and Palmer M.R. 2003. Reconstructed 60 Million Year Atmospheric Carbon Dioxide Concentration Data. IGBP PAGES/World Data Center for Paleoclimatology: Data Contribution Series # 2003–069.

    Google Scholar 

  • Peltier W.R. 2002. On eustatic sea level history: Last Glacial Maximum to Holocene. Quaternary Sci. Rev 21: 1–8.

    Google Scholar 

  • Peng C.H., Guiot J. and Van Campo E. 1995. Reconstruction of the past terrestrial carbon storage of the Northern Hemisphere from the Osnabrueck Biosphere Model and palaeodata. Climate Res. 5: 107–118.

    Google Scholar 

  • Peng C.H., Guiot J. and van Campo E. 1998. Estimating changes in terrestrial vegetation and carbon storage using palaeoecological data and models. Quaternary Sci. Rev. 17: 719–735.

    Article  Google Scholar 

  • Peters K.E., Sweeny R.E. and Kaplan I.R. 1978. Correlation of carbon and nitrogen stable isotopes in sedimentary organic matter. Limnol. Oceanogr. 23: 598–604.

    Article  CAS  Google Scholar 

  • Pflaumann U., Sarnthein M., Chapman M., d'Abreu L., Funnell B., Huels M., Kiefer T., Maslin M.A., Schulz H., Swallow J. van Kreveld S., Vautravers M., Vogelsang E. and Weinelt M. 2003. The Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP-2000. Paleoceanography 18: 1065. doi: 10.1029/2002PA000774.

    Google Scholar 

  • Pike J. and Kemp A.E.S. 1997. Early Holocene decadal-scale ocean variability recorded in Gulf of California laminated sediments. Paleoceanography 12: 227–238.

    Article  Google Scholar 

  • Pondaven P., Ragueneau O., Treguer P., Hauvespre A. Dezileau L. and Reyss J.L. 2000. Resolving the ‘opal paradox’ in the Southern Ocean. Nature 405: 168–172.

    Article  CAS  Google Scholar 

  • Popp B., Takigiku R., Hayes J., Louda J. and Baker E. 1989. The past paleozoic chronology and mechanism of 13C depletion in primary marine organic matter. Am J. Sci. 289: 436–454.

    Article  CAS  Google Scholar 

  • Popp B.N., Laws E.A., Bidigare R.R., Dore I.E. Hanson K.L. and Wakeham S.G. 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Ac. 62: 69–77.

    Article  CAS  Google Scholar 

  • Prell W.L., Imbrie J., Martinson D., Morley J., Shackleton N. and Streeter H. 1986. Graphic correlation of oxygen isotope stratigraphy application to the Late Quaternary. Paleoceanography 1: 137–162.

    Google Scholar 

  • Prentice I.C. and Fung I.Y. 1990. The sensitivity of terrestrial carbon storage to climate change. Nature 346: 48–51.

    Article  Google Scholar 

  • Prentice I.C., Sykes M.T., Lautenschlager M., Harrison S.P. Denissenki O. and Bartlein P.J. 1993. Modelling the increase in terrestrial carbon storage after the last glacial maximum. Global Ecol. Biogeogr. 3: 67–76.

    Google Scholar 

  • Pride C., Thunell R., Sigman D.M., Keigwin L., Altabet M. and Tappa E. 1999. Nitrogen isotope variations in the Gulf of California since the last deglaciation: Response to global climate change. Paleoceanography 14: 397–109.

    Article  Google Scholar 

  • Ragueneau O., Treguer P., Leynaert A., Anderson R.F., Brzezinski M.A., DeMaster D.J., Dugdale R.C., Dymond J., Fischer G., Francois R., Heinze C., Maier-Reimer E., Martin-Jezequel V. Nelson D.M. and Queguiner B. 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet. Change 26: 317–365.

    Article  Google Scholar 

  • Raubitschek S., Lülcke A. and Schleser G.H. 1999. Sedimentation patterns of diatoms in Lake Holzmaar, Germany -on the transfer of climate signals to biogenic silica oxygen isotope proxies. J. Paleolimnol. 21: 437–448.

    Article  Google Scholar 

  • Rau G.H., Takahashi T. and Des Marais D. 1989. Latitudinal variation in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341: 516–518.

    Article  CAS  Google Scholar 

  • Rau G.H., Takahashi T.Des Marais D.J., Repeta D.J. and Martin J.H. 1992. The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim. Cosmochim. Ac. 56: 1413–1419.

    Article  CAS  Google Scholar 

  • Ravelo A. and Andreasen D. 1999. Using planktonic foraminifera as monitors of tropical surface ocean. In: Abrantes F. and Mix A. (eds), Reconstructing Ocean History: A window into the future. Kluwer Academic, New York, pp. 217–243.

    Google Scholar 

  • Raymo M., Oppo D. and Curry W. 1997. The mid-Pleistocene climate transition: A deep sea carbon isotope perspective. Paleoceanography 12: 546–559.

    Google Scholar 

  • Reynolds L. and Thunell R.C. 1985. Seasonal succession of planktonic foraminifera in the subpolar north Pacific. J. Foramin. Res. 15: 282–301.

    Article  Google Scholar 

  • Reynolds L.A. and Thunell R.C. 1986. Seasonal production and morphological variation of Neogloboquadrina pachyderma (Ehrenberg) in the Northeast Pacific. Micropaleontology 32: 1–18.

    Google Scholar 

  • Reynolds J.H. and Verhoogen J. 1953. Natural variations in the isotopic constitution of silicon. Geochim. Cosmochim. Ac. 3: 224–234.

    Article  CAS  Google Scholar 

  • Rings A., Lülcke A. and Schleser G.H. 2004. A new method for the quantitative separation of diatom frustules from lake sediments. Limnol. Oceanogr. Methods. 2: 25–34.

    Google Scholar 

  • Robinson R.S., Brunelle E.G. and Sigman D.M. 2004. Revisiting nutrient utilization in the glacial Antarctic: Evidence from a new method for diatom-bound N isotopic analysis. Paleoceanography 19: PA3001. doi: 10.1029/2003PA000996.

    Google Scholar 

  • Rohling E.J. 2000. Paleosalinity: confidence limits and future applications. Mar. Geol. 163: 1–11.

    Article  CAS  Google Scholar 

  • Rohling E.J. and Cooke S. 1999. Stable oxygen and carbon isotope ratios in foraminiferal carbonate. In: Sen Gupta B.K. (ed.), Modern Foraminifera. Kluwer Academic, Dordrecht, The Netherlands, pp. 239–258.

    Google Scholar 

  • Rohling E.J, Sprovieri M., Cane T., Casford J.S.L., Cooke S., Bouloubassi I., Emeis K.C., Schiebel R., Rogerson M., Hayes A.Jorissen F.J. and Kroon D. 2004. Reconstructing past planktic foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5. Mar. Micropaleontol. 50: 89–123.

    Article  Google Scholar 

  • Rommerskirchen F., Eglinton G., Dupont L., Gunter U., Wenzel C. and Rullkotter J. 2003. A north to south transect of Holocene southeast Atlantic margin sediments: Relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochem. Geophys. Geosyst. 4: 1101. doi: 10.1029/2003GC000541.

    Article  CAS  Google Scholar 

  • Rosenthal Y., Dahan M. and Shemesh A. 2000. Southern Ocean contributions to glacial-interglacial changes of atmospheric pCO2: an assessment of carbon isotope record in diatoms. Paleoceanography 15: 65–75.

    Google Scholar 

  • Rostek F., Ruhland G., Bassinot F.C., Müller P.J., Labeyrie L.D., Lancelot Y. and Bard E. 1993. Reconstructing sea surface temperature and salinity using δ18O and alkenone records. Nature 364:319–321.

    Article  CAS  Google Scholar 

  • Ruhlemann C., Mulitza S., Muller P.J., Wefer G. and Zahn R. 1999. Tropical Atlantic warming during conveyor shut down. Nature 402: 511–514.

    CAS  Google Scholar 

  • Sackett W.M. 1964. The depositional history and isotope organic composition of marine sediments. Mar. Geol. 2: 173–185.

    Article  CAS  Google Scholar 

  • Sackett W.H., Eckelmann W.R. Bénder M.L. and Be A.W.H. 1965. Temperature dependence of carbon isotopic composition in marine plankton and sediments. Science 148: 235–237.

    CAS  Google Scholar 

  • Sachs J.P. and Repeta D.J. 1999. Oligotrophy and nitrogen fixation during eastern Mediterranean sapropel events. Science 286: 2485–2488.

    CAS  Google Scholar 

  • Sanyal A., Hemming N.G. Hanson G.N. and Broecker W.S. 1995. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373: 234–236.

    Article  CAS  Google Scholar 

  • Sanyal A., Hemming N.G., Broecker W.S., Lea D.W. Spero H.J. and Hanson G.N. 1996. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments. Paleoceanography 11: 513–517.

    Article  Google Scholar 

  • Sanyal A., Hemming N.G. Broecker W.S. and Hanson G.N. 1997. Changes in pH in the eastern equatorial Pacific across stage 5-6 boundary based on boron isotopes in foraminifera. Global Biogeochem. Cy. 11: 125–133.

    Article  CAS  Google Scholar 

  • Sanyal A., Nugent M. Reeder R.J. and Buma J. 2000. Seawater pH control on the boron isotopic composition of calcite: Evidence from inorganic calcite precipitation experiments. Geochim. Cosmochim. Ac. 64: 1551–1555.

    Article  CAS  Google Scholar 

  • Sanyal A., Bijma J. Spero H. and Lea D.W. 2001. Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy. Paleoceanography 16: 515–519.

    Article  Google Scholar 

  • Sarnthein M. and Tiedemann R. 1990. Younger Dryas-style cooling events at glacial terminations I-VI at ODP Site 685: associated benthic δ13C anomalies constrain meltwater hypothesis. Paleoceanography 5: 1041–1055.

    Google Scholar 

  • Sarnthein M., Winn K. Duplessy J-C. and Fontugne M. 1988. Global variations of surface ocean productivity in low and mid latitudes. Paleoceanography 3: 361–398.

    Google Scholar 

  • Sarnthein M., Winn K., Jung S.J.A., Duplessy J.C., Labeyrie L.Erlenkreuser H. and Ganssen G.M. 1994. Changes in east Atlantic deepwater circulation over the last 30,000 years: eight time slice reconstructions. Paleoceanography 10: 1063–1094.

    Google Scholar 

  • Sautter L.R. and Thunell. R.G. 1991. Seasonal varibility in the δ18O and δ13C of planktonic foraminifera from anupwelling environment. Paleoceanography 3: 307–334.

    Google Scholar 

  • Schmidt G.A. 1999. Error analysis of paleosalinity calculations. Paleoceanography 14: 422–29.

    Google Scholar 

  • Schmidt M., Botz R., Staffers P., Anders T. and Bohrmann G. 1997. Oxygen isotopes in marine diatoms: A comparative study of analytical techniques and new results on the isotope composition of recent marine diatoms. Geochim. Cosmochim. Ac. 61: 2275–2280.

    CAS  Google Scholar 

  • Schmidt M, Botz R., Rickert D., Bohrmann G., Hall S.R. and Mann S. 2001. Oxygen isotopes of marine diatoms and relations to opal-A maturation. Geochim. Cosmochim. Ac. 65: 201–211.

    CAS  Google Scholar 

  • Schneider R., Muller P.J. and Wefer G. 1994. Late Quaternary paleoproductivity changes off the Congo deduced from stable isotopes of planktonic foraminifera. Palaeogeogr. Palaeocl. 110: 255–274.

    Google Scholar 

  • Schrag D.P., Hampt G. and Murray D.W. 1996. Pore fluid constraints on the temperature and oxygen isotope composition of the glacial ocean. Science 272: 1930–1932.

    CAS  Google Scholar 

  • Schrag D.P., Adkins J.F., McIntyre K., Alexander J.L., Hodell D.A., Charles C.D. and McManus J.F. 2002. The oxygen isotope composition of seawater during the Last Glacial Maximum. Quaternary Sci. Rev. 21: 331–342.

    Article  Google Scholar 

  • Seidov D., Haupt B.J. and Maslin M.A. (eds). 2001. The Oceans and Rapid Climate Change: Past, Present and Future. AGU Geophysical Monograph Series Volume 126, Washington DC, 293 pp.

    Google Scholar 

  • Seitzinger S.P. and Sanders R.W. 1999. Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnol. Oceanogr. 44: 721–730.

    CAS  Google Scholar 

  • Severinghaus J.P. and Brook E.J. 1999. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286: 930–934.

    Article  CAS  Google Scholar 

  • Shackleton N.J. 1967. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215: 15–17.

    CAS  Google Scholar 

  • Shackleton N.J. 1974. Attainment of isotopic equilibrium between ocean water and the benthic foraminifera Genus Uvigerina: isotope changes in the ocean during the last glacial. In: Les méthodes quantitatives d'étude des variations due climat au cours du Pleistocene, 219. Colloques Internationaux de Central National de la Recherce Scientifique CNRS, Paris, pp. 203–209.

    Google Scholar 

  • Shackleton N.J. 1977. The oxygen isotope stratigraphic records of the Pleistocene. Philos. T. Roy. Soc. B. 280: 169–179.

    Google Scholar 

  • Shackleton N.J. 2000. The 100,000 year Ice Age cycle identified and found to lag temperature, carbon dioxide and orbital eccentricity. Science 289: 1897–1902.

    Article  Google Scholar 

  • Shackleton N.J. and Opdyke N.D. 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28–238. Quaternary Res. 3: 39–55.

    Article  CAS  Google Scholar 

  • Shackleton N.J., Imbrie J. and Hall M.A. 1983. Oxygen and carbon isotope record of East Pacific core VI9–30: implications for deep water in the late Pleistocene North Atlantic. Earth Planet. Sc. Lett. 65: 233–244.

    CAS  Google Scholar 

  • Shackleton N.J., Hall M.A. and Pate D. 1995. Pliocene stable isotope stratigraphy of Site 846. In: Pisias N.G., Mayer L.A., Janecek T.R., Palmer-Julson A. and van Andel T.H. (eds), Proc. ODP Scientific Results: 138. College Station, Texas, pp 337–357.

    Google Scholar 

  • Shemesh A., Charles C.D. and Fairbanks R.G. 1992. Oxygen isotopes in biogenic silica: global changes in ocean temperature and isotopic composition. Science 256: 1434-1436.

    CAS  Google Scholar 

  • Shemesh A., Macko S.A. Charles C.D. and Rau G.H. 1993. Isotopic evidence for reduced productivity in the glacial Southern Ocean. Science 262: 407-410.

    CAS  Google Scholar 

  • Shemesh A., Burckle L.H. and Hays J.D. 1994. Meltwater input to the Southern Ocean during the Last Glacial Maximum. Science 266: 1542-1544.

    CAS  Google Scholar 

  • Shemesh A., Burckle L.H. and Hays J.D. 1995. Late Pleistocene oxygen-isotope records of biogenic silica from the Atlantic sector of the Southern-Ocean. Paleoceanography 10: 179-196.

    Article  Google Scholar 

  • Shemesh A., Hodell D., Crosta C., Kanfoush S., Charles C. and Guilderson T. 2002. Sequence of events during the last deglaciation in Southern Ocean sediments and Antarctic ice cores. Paleoceanography 17: 1056. doi: 10.1029/2000PA000599.

    Google Scholar 

  • Skinner L., Shackleton N.J. and Elderfield H. 2003. Millennial-scale variability of deep water temperature and δ18OdW indicating deep-water source variations in the Northeast Atlantic, 0-34 cal. KaBP. Geochem. Geophys. Geosyst. 4: 1098. doi: 10.1029/2003GC000585.

    Google Scholar 

  • Siddall M., Rohling E.J., Almogi-Labin A., Hemleben C., Meischner D. Schmelzer I. and Smeed D.A. 2003. Sea-level fluctuations during the last glacial cycle. Nature 423: 853-858.

    Article  CAS  Google Scholar 

  • Sigman D.M. and Haug G.H. 2004. The biological pump in the past. In: Elderfield H. (ed.), Treatise on Geochemistry, Volume 6: The Oceans and Marine Geochemistry. Elsevier, Amsterdam, pp. 491–528.

    Google Scholar 

  • Sigman D.M., Altabet M.A., Francoise R. and Whelan J. 1997. Diatom microfossil N isotopes support the hypothesis of higher nitrate utilisation in the Southern Ocean during the last ice age. Abstr. Pap. Am. Chem. S. 214: 69-GEOC.

    Google Scholar 

  • Sigman D.M., Altabet M.A., Francois R., McCorkle D.C. and Fischer G. 1999. The δ18O of nitrate in the Southern Ocean: Consumption of nitrate in surface water. Global Biogeochem. Cy. 13: 1149–1166.

    Article  CAS  Google Scholar 

  • Sigman D.M., Altabet M.A., Francois R., McCorkle D.C. and Gaillard J-F. 1999. The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography 14: 118–134.

    Article  Google Scholar 

  • Sigman D.M., Jaccard S.L. and Haug G.H. 2004. Polar ocean stratification in a cold climate. Nature 428: 59–63.

    Article  CAS  Google Scholar 

  • Simstich J., Sarnthein M. and Erlenkeuser H. 2003. Paired δ18O signals of Neogloboquadrina pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas. Mar. Micropaleontol. 48: 107–125.

    Article  Google Scholar 

  • Singer A.J. and Shemesh A. 1995. Climatically linked carbon isotope variation during the past 430,000 years in Southern Ocean sediments. Paleoceanography 10: 171–177.

    Article  Google Scholar 

  • Smith B.M. and Epstein S. 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47: 380–384.

    Article  CAS  Google Scholar 

  • Spadaro P.A. 1983. Silicon isotope fractionation by the marine diatom Phaeodactylum tricornutum. MSc thesis. University of Chicago, Chicago.

    Google Scholar 

  • Spivack A.J. and Edmond J.M 1987. Boron isotope exchange between seawater and the oceanic crust. Geochim. Cosmochim. Ac. 51: 1033–1043.

    CAS  Google Scholar 

  • Spivack A.J., You C.F. and Smith H.J. 1993. Foraminifera boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr. Nature 363: 149–151.

    Article  CAS  Google Scholar 

  • Sundquist E.T. and Visser K. 2004. The geologic history of the carbon cycle. In: Schlesinger W.H. (ed.), Treatise on Geochemistry, Volume 8: Biogeochemistry. Elsevier, Amsterdam, pp. 425–172.

    Google Scholar 

  • Takeda S. 1998. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393: 774–777.

    Article  CAS  Google Scholar 

  • Taylor H.P. and Epstein S. 1970. Oxygen and silicon isotope ratios of lunar rock. Earth Planet. Sc. Lett. 9: 208–210.

    CAS  Google Scholar 

  • Tiedemann R., Sarnthein M. and Shackleton N.J. 1994. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of ODP Site 659. Paleoceanography 9: 619–638.

    Article  Google Scholar 

  • Tilles D. 1961a. Variations of silicon isotope ratios in a zoned pegmatite, J. Geophys. Res. 66: 3015–3020.

    CAS  Google Scholar 

  • Tilles D. 1961b Natural variations in isotopic abundances of silicon, J. Geophys. Res. 66: 3003–3014.

    CAS  Google Scholar 

  • Thunell R.C. and Kepple A. 2004. Glacial-Holocene δ15N record from the Gulf of Tehuantepec, Mexico: Implications for denitrification in the eastern equatorial Pacific and changes in atmospheric N2O. Global Biogeochem. Cy. 18: GB1001, doi:10.1029/2002GB002028.

    Google Scholar 

  • Tolderlund D.S. and Bé A.W.H. 1971. Seasonal distributions of planktonic foraminifera in the western North Atlantic. Micropaleontology. 30: 241–260.

    Google Scholar 

  • Tréguer P., Nelson D.M., Van Bennekom A.J., DeMaster D.J., Leynaert A. and Queguiner B. 1995. The silica balance in the world ocean –-a re-estimate. Science 268: 375–379.

    Google Scholar 

  • Tudhope A.W., Chilcott C.P., McCulloch M.T., Cook E.R., Chappell J., Ellam R.M., Lea D.W., Lough J.M. and Shimmield G.B. 2001. Variability in the E1 Niδo–-Southern Oscillation through a glacial-interglacial cycle. Science 291: 1511–1517.

    Article  CAS  Google Scholar 

  • Turchyn A.V. and Schrag D. 2004. Oxygen isotope constraints on the sulphur cycle over the last 10 million years. Science 303: 2004–2007.

    Article  CAS  Google Scholar 

  • Uchida M., Shibata Y., Ohkushi K., Ahagon N. and Hoshiba M. 2004. Episodic methane release events from Last Glacial marginal sediments in the western North Pacific Geochem. Geophys. Geosyst. 5: Q08005, doi: 10.1029/2004GC000699.

    Google Scholar 

  • Uliana E., Lange C.B. and Wefer G. 2002. Evidence for Congo River freshwater load in Late Quaternary sediments of ODP Site 1077 (5°S, 10°E). Palaeogeogr. Palaeocl. 187: 137–150.

    Google Scholar 

  • Urey H.C. 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. 152: 190–219.

    Google Scholar 

  • Urey H.C. 1948. Oxygen isotopes in nature and in the laboratory. Science 108: 489–496.

    CAS  Google Scholar 

  • van Campo E., Guiot J. and Peng C.H. 1993. A data-based re-appraisal of the terrestrial carbon budget at the Last Glacial Maximum. Global Planet. Change 8: 189–201.

    Google Scholar 

  • Varela D.E., Pride C. J. and Brzezinski M. A. 2004. Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochem. Cy. 18: GB1047, doi: 10.1029/2003GB002140.

    Google Scholar 

  • Vroon P.Z., Beets C.J., Van Soest R.W.M., Schwieters J., Troelstra S.R., Van Belle J.C., Davies G.R. and Andriessen P.A.M. 2002. Silicon isotope composition of sponge spicules determined by MC-ICPMS. Geochim. Cosmochim. Ac. 67: A812 supplement.

    Google Scholar 

  • Vroon P.Z., Beets C.J., Soenarjo D.H., Van Soest R.W.M., Troelstra S.R., Schwieters J., Van Belle J.C. and Van der Wagt B. 2004. Species dependent fractionation of silicon isotopes by present-day demosponges. Geochim. Cosmochim. Ac. 68: A213 supplement.

    Google Scholar 

  • Waelbroeck C., Labeyrie L., Michel E., Duplessy J.C., McManus J.F., Lambeck K., Balbon E. and Labracherie M. 2002. Sea level and deep water temperature changes derived from benthic foraminifera isotope records. Quaternary Sci. Rev. 21: 295-305.

    Article  Google Scholar 

  • Wang L.J., Sarnthein M., Erlenkeuser H., Grootes P., Grimalt J., Pelejero C. and Linck G. 1999a. Holocene variations in Asian monsoon moisture: a bidecadal sediment record from the South China Sea. Geophys. Res. Lett. 26: 2889–2892.

    Google Scholar 

  • Wang L.J, Sarnthein M., Erlenkeuser H., Grimalt J., Grootes P., Heilig S., Ivanova E., Kienast M., Pelejero C. and Pflaumann U. 1999b. East Asian monsoon climate during the late Pleistocene: High resolution sediment records from the South China Sea. Mar. Geol. 156: 245–284.

    Google Scholar 

  • Waser N.A.D., Turpin D.H., Harrison P.J., Nielsen B. and Calvert S.E. 1998. Nitrogen isotope fractionation during the uptake and assimilation of nitrate and urea by marine diatom. Limnol. Oceanogr. 43: 215–224.

    CAS  Google Scholar 

  • Wefer G., Berger W.H., Bijma J. and Fischer G. 1999. Clues to Ocean History: A brief overview of proxies: In: Fischer G. and Wefer G. (eds), Uses of proxies in Paleoceanography: Examples from the South Atlantic. Springer, Berlin, pp. 1–68.

    Google Scholar 

  • Wischmeyer A.G., De La Rocha C.L., Maier-Reimer E. and Wolf-Gladrow D.A. 2003. Control mechanisms for the oceanic distribution of silicon isotopes. Global Biogeochem. Cy. 1083. doi: 10.1029/2002GB002022.

    Google Scholar 

  • Yokoyama Y., Lambeck K., De Deckker P.P.J. and Fifield L.K. 2000. Timing of the last glacial maximum from observed sea-level minima. Nature 406: 713–716.

    Article  CAS  Google Scholar 

  • Zachos J.C., Pagani M.N., Sloan L., Thomas E. and Billups K. 2001. Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292: 686–693.

    CAS  Google Scholar 

  • Zahn R., Winn K. and Sarnthein M. 1986. Benthic foraminifera Episodic methane release events from Last Glacial marginal sediments δ13C and accumulation rates of organic carbon. Paleoceanography 1: 27–42.

    Google Scholar 

  • Zeebe R.E. 2005. Stable boron isotope fractionation between dissolved B(OH)3 and B(OH)- 4. Geochim. Cosmochim. Ac. 69: 2753–2766.

    CAS  Google Scholar 

  • Zeebe R.E., Wolf-Gladrow D.A. 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography Series, 65, Amsterdam, 346 pp.

    Google Scholar 

  • Zeebe R.E., Wolf-Gladrow D.A., Bijma J. and H$oUnisch B. 2003. Vital effects in foraminifera do not compromise the use of δ11B as a paleo-pH indicator: Evidence from modelling. Paleoceanography 18: 1043. doi: 10.1029/2003PA000881.

    Google Scholar 

  • Ziegler K., Chadwick O.A., Kelly E.F., Brzezinski M.A. and DeNiro M.J. 2000. Silicon isotope fractionation during weathering and soil formation: experimental results. Journal of Conference Abstracts 5: 1135.

    Google Scholar 

  • Ziegler K., Chadwick O.A., Kelly E.F. and Brzezinski M.A. 2002. The δ30Si values of soil weathering profiles: Indicators of Si pathways at the lithosphere/hydro(bio)sphere interface. Geochim. Cosmochim. Ac. 66: A881 supplement.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

MASLIN, M.A., SWANN, G.E. (2006). ISOTOPES IN MARINE SEDIMENTS. In: Leng, M.J. (eds) Isotopes in Palaeoenvironmental Research. Developments in Paleoenvironmental Research, vol 10. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2504-1_06

Download citation

Publish with us

Policies and ethics