Skip to main content

Cytosine Methylation and DNA Repair

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 301))

Abstract

Cytosine methylation is a common form of post-replicative DNA modification seen in both bacteria and eukaryotes. Modified cytosines have long been known to act as hotspots formutations due to the high rate of spontaneous deamination of this base to thymine, resulting in a G/T mismatch. This will be fixed as a C→T transition after replication if not repaired by the base excision repair (BER) pathway or specific repair enzymes dedicated to this purpose. This hypermutability has led to depletion of the target dinucleotide CpG outside of special CpG islands in mammals, which are normally unmethylated. We review the importance of C→T transitions at nonisland CpGs in human disease: When these occur in the germline, they are a common cause of inherited diseases such as epidermolysis bullosa and mucopolysaccharidosis, while in the soma they are frequently found in the genes for tumor suppressors such as p53 and the retinoblastoma protein, causing cancer. We also examine the specific repair enzymes involved, namely the endonuclease Vsr in Escherichia coli and two members of the uracil DNA glycosylase (UDG) superfamily in mammals, TDG and MBD4. Repair brings its own problems, since it will require remethylation of the replacement cytosine, presumably coupling repair to methylation by either the maintenance methylase Dnmt1 or a de novo enzyme such as Dnmt3a. Uncoupling of methylation from repair may be one way to remove methylation from DNA. We also look at the possible role of specific cytosine deaminases such as Aid and Apobec in accelerating deamination of methylcytosine and consequent DNA demethylation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts S, Thijs G, Dabrowski M, Moreau Y, De Moor B (2004) Comprehensive analysis of the base composition around the transcription start site in Metazoa. BMC Genomics 5:34

    PubMed  Google Scholar 

  • Antequera F (2003) Structure, function and evolution of CpG island promoters. Cell Mol Life Sci 60:1647–1658

    CAS  PubMed  Google Scholar 

  • Bader S, Walker M, Hendrich B, Bird A, Bird C, Hooper M, Wyllie A (1999) Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Oncogene 18:8044–8047

    CAS  PubMed  Google Scholar 

  • Bartolomei MS, Tilghman SM (1997) Genomic imprinting in mammals. Annu Rev Genet 31:493–525

    Article  CAS  PubMed  Google Scholar 

  • Beard C, Li E, Jaenisch R (1995) Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev 9:2325–2334

    CAS  PubMed  Google Scholar 

  • Bellacosa A (2001) Role of MED1 (MBD4) Gene in DNA repair and human cancer. J Cell Physiol 187:137–144

    Article  CAS  PubMed  Google Scholar 

  • Bellacosa A, Cicchillitti L, Schepis F, Riccio A, Yeung AT, Matsumoto Y, Golemis EA, Genuardi M, Neri G (1999) MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proc Natl Acad Sci U S A 96:3969–3974

    Article  CAS  PubMed  Google Scholar 

  • Bellus GA, McIntosh I, Smith EA, Aylsworth AS, Kaitila I, Horton WA, Greenhaw GA, Hecht JT, Francomano CA (1995) A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet 10:357–359

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH (2003) Unanswered questions about the role of promoter methylation in carcinogenesis. Ann N Y Acad Sci 983:22–27

    CAS  PubMed  Google Scholar 

  • Bhagwat AS, Lieb M (2002) Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coli. Mol Microbiol 44:1421–1428

    Article  CAS  PubMed  Google Scholar 

  • Bhagwat AS, McClelland M (1992) DNA mismatch correction by very short patch repair may have altered the abundance of oligonucleotides in the E. coli genome. Nucleic Acids Res 20:1663–1668

    CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M (1999) A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397:579–583

    CAS  PubMed  Google Scholar 

  • Bird A (1997) Does DNA methylation control transposition of selfish elements in the germline? Trends Genet 13:469–472

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Bird AP, Taggart MH, Frommer M, Miller OJ, MacLeod D (1985) A fraction of the mouse genome that is derived from islands of non-methylated, CpG-rich DNA. Cell 40:91–99

    Article  CAS  PubMed  Google Scholar 

  • Bird AP, Taggart MH, Nicholls RD, Higgs DR (1987) Non-methylated CpG-rich islands at the human alpha-globulin locus: implications for evolution of the alphaglobulin pseudogene. EMBO J 6:999–1004

    CAS  PubMed  Google Scholar 

  • Bonneau D, Longy M (2000) Mutations of the human PTEN gene. Hum Mutat 16:109–122

    Article  CAS  PubMed  Google Scholar 

  • Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99

    CAS  PubMed  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539

    CAS  PubMed  Google Scholar 

  • Bransteitter R, Pham P, Scharff MD, Goodman MF (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A 100:4102–4107

    Article  CAS  PubMed  Google Scholar 

  • Brown TC, Jiricny J (1987) A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Cell 50:945–950

    CAS  PubMed  Google Scholar 

  • Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW (2003) Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422:726–730

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Lucey MJ, Phoenix F, Lopez-Garcia J, Hart SM, Losson R, Buluwela L, Coombes RC, Chambon P, Schar P, Ali S (2003) T:G mismatch-specific thymine-DNA glycosylase potentiates transcription of estrogen-regulated genes through direct interaction with estrogen receptor alpha. J Biol Chem 278:38586–38592

    CAS  PubMed  Google Scholar 

  • Choi Y, Harada JJ, Goldberg RB, Fischer RL (2004) An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprinted MEDEA gene. Proc Natl Acad Sci U S A 101:7481–7486

    CAS  PubMed  Google Scholar 

  • Clark SJ, Harrison J, Frommer M (1995) CpNpG methylation in mammalian cells. Nat Genet 10:20–27

    Article  CAS  PubMed  Google Scholar 

  • Cooper DN, Krawczak M (1993) Human gene mutation. BIOS Scientific Publishers, Oxford, pp 1–325

    Google Scholar 

  • Cross SH, Bird AP (1995) CpG islands and genes. Curr Opin Genet Dev 5:309–314

    Article  CAS  PubMed  Google Scholar 

  • Dar ME, Bhagwat AS (1993) Mechanism of expression of DNA repair gene vsr, an Escherichia coli gene that overlaps the DNA cytosine methylase gene, dcm. Mol Microbiol 9:823–833

    CAS  PubMed  Google Scholar 

  • De Smet C, Lurquin C, Lethe B, Martelange V, Boon T (1999) DNA methylation is the primary silencing mechanism for a set of germ line-and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19:7327–7335

    PubMed  Google Scholar 

  • Denissenko MF, Pao A, Tang M, Pfeifer GP (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274:430–432

    Article  CAS  PubMed  Google Scholar 

  • Denissenko MF, Chen JX, Tang MS, Pfeifer GP (1997) Cytosine methylation determines hot spots of DNA damage in the human P53 gene. Proc Natl Acad Sci U S A 94:3893–3898

    Article  CAS  PubMed  Google Scholar 

  • Detich N, Theberge J, Szyf M (2002) Promoter-specific activation and demethylation by MBD2/demethylase. J Biol Chem 277:35791–35794

    Article  CAS  PubMed  Google Scholar 

  • Dianov GL, Sleeth KM, Dianova II, Allinson SL (2003) Repair of abasic sites in DNA. Mutat Res 531:157–163

    CAS  PubMed  Google Scholar 

  • Drummond JT, Bellacosa A (2001) Human DNA mismatch repair in vitro operates independently of methylation status at CpG sites. Nucleic Acids Res 29:2234–2243

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M, Norris KF, Wang RY, Kuo KC, Gehrke CW (1986) DNA cytosine methylation and heat-induced deamination. Biosci Rep 6:387–393

    Article  CAS  PubMed  Google Scholar 

  • El-Maarri O, Olek A, Balaban B, Montag M, van der Ven H, Urman B, Olek K, Caglayan SH, Walter J, Oldenburg J (1998) Methylation levels at selected CpG sites in the factor VIII and FGFR3 genes, in mature female and male germ cells: implications for male-driven evolution. Am J Hum Genet 63:1001–1008

    Article  CAS  PubMed  Google Scholar 

  • El-Osta A (2002) FMR1 silencing and the signals to chromatin: a unified model of transcriptional regulation. Biochem Biophys Res Commun 295:575–581

    Article  CAS  PubMed  Google Scholar 

  • El-Osta A (2004) The rise and fall of genomic methylation in cancer. Leukemia 18:233–237

    Article  CAS  PubMed  Google Scholar 

  • Fedoriw AM, Stein P, Svoboda P, Schultz RM, Bartolomei MS (2004) Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303:238–240

    Article  CAS  PubMed  Google Scholar 

  • Freitag M, Williams RL, Kothe GO, Selker EU (2002) A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc Natl Acad Sci U S A 99:8802–8807

    Article  CAS  PubMed  Google Scholar 

  • Gallinari P, Jiricny J (1996) A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase. Nature 383:735–738

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SL, Sharp PA (1999) Promoter-specific hypoacetylation of X-inactivated genes. Proc Natl Acad Sci U S A 96:13825–13830

    CAS  PubMed  Google Scholar 

  • Goh HS, Yao J, Smith DR (1995) p53 point mutation and survival in colorectal cancer patients. Cancer Res 55:5217–5221

    CAS  PubMed  Google Scholar 

  • Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Zhu JK (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–814

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb B, Trifiro M, Lumbroso R, Pinsky L (1997) The androgen receptor gene mutations database. Nucleic Acids Res 25:158–162

    Article  CAS  PubMed  Google Scholar 

  • Gowher H, Leismann O, Jeltsch A (2000) DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J 19:6918–6923

    Article  CAS  PubMed  Google Scholar 

  • Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Wang W, Bradley A (2004) Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 429:891–895

    Article  CAS  PubMed  Google Scholar 

  • Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germcells. Mech Dev 117:15–23

    Article  CAS  PubMed  Google Scholar 

  • Hardeland U, Bentele M, Lettieri T, Steinacher R, Jiricny J, Schar P (2001) Thymine DNA glycosylase. Prog Nucleic Acid Res Mol Biol 68:235–253

    CAS  PubMed  Google Scholar 

  • Hardeland U, Steinacher R, Jiricny J, Schar P (2002) Modification of the thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J 21:1456–1464

    Article  CAS  PubMed  Google Scholar 

  • Hardeland U, Bentele M, Jiricny J, Schar P (2003) The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs. Nucleic Acids Res 31:2261–2271

    Article  CAS  PubMed  Google Scholar 

  • Hare J, Taylor JH (1985) Methylation directed strand discrimination in mismatch repair. Prog Clin Biol Res 198:37–44

    CAS  PubMed  Google Scholar 

  • Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489

    CAS  PubMed  Google Scholar 

  • Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, Neuberger MS, Malim MH (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–809

    Article  CAS  PubMed  Google Scholar 

  • Heard E, Clerc P, Avner P (1997) X-chromosome inactivation in mammals. Annu Rev Genet 31:571–610

    Article  CAS  PubMed  Google Scholar 

  • Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    CAS  PubMed  Google Scholar 

  • Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A (1999) The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401:301–304

    CAS  PubMed  Google Scholar 

  • Hennecke F, Kolmar H, Brundl K, Fritz HJ (1991) The vsr gene product of E. coli K-12 is a strand-and sequence-specific DNA mismatch endonuclease. Nature 353:776–778

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  CAS  PubMed  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    CAS  PubMed  Google Scholar 

  • IARC (2004) TP53 Database. http://www-p53.iarc.fr/index.html. Cited 1 August 2005

    Google Scholar 

  • Jahner D, Stuhlmann H, Stewart CL, Harbers K, Lohler J, Simon I, Jaenisch R (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628

    CAS  PubMed  Google Scholar 

  • Jiricny J (1998) Eukaryotic mismatch repair: an update. Mutat Res 409:107–121

    CAS  PubMed  Google Scholar 

  • Kohler SW, Provost GS, Fieck A, Kretz PL, Bullock WO, Sorge JA, Putman DL, Short JM (1991) Spectra of spontaneous and mutagen-induced mutations in the lacI gene in transgenic mice. Proc Natl Acad Sci U S A 88:7958–7962

    CAS  PubMed  Google Scholar 

  • Krawczak M, Ball EV, Cooper DN (1998) Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 63:474–488

    Article  CAS  PubMed  Google Scholar 

  • Krokan HE, Drablos F, Slupphaug G (2002) Uracil in DNA—occurrence, consequences and repair. Oncogene 21:8935–8948

    Article  CAS  PubMed  Google Scholar 

  • Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340:692–696

    Article  CAS  PubMed  Google Scholar 

  • Lania A, Mantovani G, Spada A (2003) Genetics of pituitary tumors: focus on G-protein mutations. Exp Biol Med (Maywood) 228:1004–1017

    CAS  Google Scholar 

  • Lees-Murdock D, De Felici M, Walsh C (2003) Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage. Genomics 82:230–237

    Article  CAS  PubMed  Google Scholar 

  • Letai A, Coulombe PA, McCormick MB, Yu QC, Hutton E, Fuchs E (1993) Disease severity correlates with position of keratin point mutations in patients with epidermolysis bullosa simplex. Proc Natl Acad Sci U S A 90:3197–3201

    CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    CAS  PubMed  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    CAS  PubMed  Google Scholar 

  • Li JY, Lees-Murdock DJ, Xu GL, Walsh CP (2004) Timing of establishment of paternal methylation imprints in the mouse. Genomics 84:952–960

    CAS  PubMed  Google Scholar 

  • Lieb M (1991) Spontaneous mutation at a 5-methylcytosine hotspot is prevented by very short patch (VSP) mismatch repair. Genetics 128:23–27

    CAS  PubMed  Google Scholar 

  • Lindahl T (2001) Keynote: past, present, and future aspects of base excision repair. Prog Nucleic Acid Res Mol Biol 68:xvii–xxx

    CAS  PubMed  Google Scholar 

  • Lohmann DR (1999) RB1 gene mutations in retinoblastoma. Hum Mutat 14:283–288

    Article  CAS  PubMed  Google Scholar 

  • Lutsenko E, Bhagwat AS (1999) Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support and implications. Mutat Res 437:11–20

    CAS  PubMed  Google Scholar 

  • Lyko F, Ramsahoye BH, Jaenisch R (2000) DNA methylation in Drosophila melanogaster. Nature 408:538–540

    CAS  PubMed  Google Scholar 

  • MacLeod D, Charlton J, Mullins J, Bird AP (1994) Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Show Sp1 sites occupied by footprinting; deletion ormutation of these sites result in methylation of the island and loss of protein binding. Genes Dev 8:2282–2292

    CAS  PubMed  Google Scholar 

  • Malagnac F, Wendel B, Goyon C, Faugeron G, Zickler D, Rossignol JL, Noyer-Weidner M, Vollmayr P, Trautner TA, Walter J (1997) A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91:281–290

    Article  CAS  PubMed  Google Scholar 

  • Mancini D, Singh S, Ainsworth P, Rodenhiser D (1997) Constitutively methylated CpG dinucleotides asmutation hot spots in the retinoblastoma gene (RB1). AmJ Hum Genet 61:80–87

    CAS  Google Scholar 

  • Marin M, Karis A, Visser P, Grosveld F, Philipsen S (1997) Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell 89:619–628

    Article  CAS  PubMed  Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074

    Article  CAS  PubMed  Google Scholar 

  • May MS, Hattman S (1975) Analysis of bacteriophage deoxyribonucleic acid sequences methylated by host-and R-factor-controlled enzymes. J Bacteriol 123:768–770

    CAS  PubMed  Google Scholar 

  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502

    CAS  PubMed  Google Scholar 

  • Merkl R, Kroger M, Rice P, Fritz HJ (1992) Statistical evaluation and biological interpretation of non-random abundance in the E. coli K-12 genome of tetra-and pentanucleotide sequences related to VSP DNA mismatch repair. Nucleic Acids Res 20:1657–1662

    CAS  PubMed  Google Scholar 

  • Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, Keightley PD, Bishop SM, Clarke AR, Bird A (2002) Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297:403–405

    Article  CAS  PubMed  Google Scholar 

  • Millard JT, Beachy TM (1993) Cytosine methylation enhances mitomycin C crosslinking. Biochemistry 32:12850–12856

    CAS  PubMed  Google Scholar 

  • Missero C, Pirro MT, Simeone S, Pischetola M, Di Lauro R (2001) The DNA glycosylase T:G mismatch-specific thymine DNA glycosylase represses thyroid transcription factor-1-activated transcription. J Biol Chem 276:33569–33575

    Article  CAS  PubMed  Google Scholar 

  • Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK (2004) Aid deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues—implications for epigenetic reprogramming. J Biol Chem 279:52353

    CAS  PubMed  Google Scholar 

  • Mutskov V, Felsenfeld G (2004) Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J 23:138–149

    Article  CAS  PubMed  Google Scholar 

  • Neddermann P, Jiricny J (1993) The purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells. J Biol Chem 268:21218–21224

    CAS  PubMed  Google Scholar 

  • Neddermann P, Gallinari P, Lettieri T, Schmid D, Truong O, Hsuan JJ, Wiebauer K, Jiricny J (1996) Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J Biol Chem 271:12767–12774

    CAS  PubMed  Google Scholar 

  • Ohlsson R, Paldi A, Graves JA (2001) Did genomic imprinting and X chromosome inactivation arise from stochastic expression? Trends Genet 17:136–141

    CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Ory K, Legros Y, Auguin C, Soussi T (1994) Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J 13:3496–3504

    CAS  PubMed  Google Scholar 

  • Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10:475–478

    Article  CAS  PubMed  Google Scholar 

  • Parsons BL (2003) MED1: a central molecule for maintenance of genome integrity and response to DNA damage. Proc Natl Acad Sci U S A 100:14601–14602

    CAS  PubMed  Google Scholar 

  • Pattinson JK, Millar DS, McVey JH, Grundy CB, Wieland K, Mibashan RS, Martinowitz U, Tan-Un K, Vidaud M, Goossens M (1990) The molecular genetic analysis of hemophilia A: a directed search strategy for the detection of point mutations in the human factor VIII gene. Blood 76:2242–2248

    CAS  PubMed  Google Scholar 

  • Pearl LH (2000) Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res 460:165–181

    CAS  PubMed  Google Scholar 

  • Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P (2002) Tobaccosmoke carcinogens, DNA damage and p53 mutations insmoking-associated cancers. Oncogene 21:7435–7451

    Article  CAS  PubMed  Google Scholar 

  • Riccio A, Aaltonen LA, Godwin AK, Loukola A, Percesepe A, Salovaara R, Masciullo V, Genuardi M, Paravatou-Petsotas M, Bassi DE, Ruggeri BA, Klein-Szanto AJ, Testa JR, Neri G, Bellacosa A (1999) The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat Genet 23:266–268

    CAS  PubMed  Google Scholar 

  • Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, Munnich A (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–254

    Article  CAS  PubMed  Google Scholar 

  • Schärer OD, Jiricny J (2001) Recent progress in the biology chemistry and structural biology of DNA glycosylases. Bio Essays 23:270–281

    Google Scholar 

  • Scheffer H, Huangxuna S, Carroll J, Lohmann D, et al (2005) RB1-gene mutation database. http://rb1-lsdb.d-lohmann.de/. Cited 1 August 2005

    Google Scholar 

  • Schlagman S, Hattman S, May MS, Berger L (1976) In vivo methylation by Escherichia coli K-12mec+deoxyribonucleic acid-cytosine methylase protects against in vitro cleavage by the RII restriction endonuclease (R. Eco RII). J Bacteriol 126:990–996

    CAS  PubMed  Google Scholar 

  • Selker EU, Tountas NA, Cross SH, Margolin BS, Murphy JG, Bird AP, Freitag M (2003) The methylated component of the Neurospora crassa genome. Nature 422:893–897

    Article  CAS  PubMed  Google Scholar 

  • Shen JC, Rideout WM 3rd, Jones PA (1994) The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res 22:972–976

    CAS  PubMed  Google Scholar 

  • Shenoy S, Ehrlich KC, Ehrlich M (1987) Repair of thymine, guanine and uracil guanine mismatched base-pairs in bacteriophage M13mp18 DNA heteroduplexes. J Mol Biol 197:617–626

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Iwai S, Hanaoka F, Sugasawa K (2003) Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J 22:164–173

    Article  CAS  PubMed  Google Scholar 

  • Simmen MW, Leitgeb S, Charlton J, Jones SJ, Harris BR, Clark VH, Bird A (1999) Nonmethylated transposable elements and methylated genes in a chordate genome. Science 283:1164–1167

    Article  CAS  PubMed  Google Scholar 

  • Simonsson S, Gurdon J (2004) DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol 6:984–990

    Article  CAS  PubMed  Google Scholar 

  • Sohail A, Lieb M, Dar M, Bhagwat AS (1990) A gene required for very short patch repair in Escherichia coli is adjacent to the DNA cytosine methylase gene. J Bacteriol 172:4214–4221

    CAS  PubMed  Google Scholar 

  • Soussi T, Beroud C (2003) Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat 21:192–200

    CAS  PubMed  Google Scholar 

  • Stewart CL, Stuhlmann H, Jahner D, Jaenisch R (1982) De novo methylation, expression, and infectivity of retroviral genomes introduced into embryonal carcinoma cells. Proc Natl Acad Sci U S A 79:4098–4102

    CAS  PubMed  Google Scholar 

  • Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA, Dove WF (1992) Multiple intestinal neoplasia caused by amutation in themurine homolog of the APC gene. Science 256:668–670

    CAS  PubMed  Google Scholar 

  • Sved J, Bird A (1990) The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc Natl Acad Sci U S A 87:4692–4696

    CAS  PubMed  Google Scholar 

  • Tada M, Tada T, Lefebvre L, Barton SC, Surani MA (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 16:6510–6520

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Naito Y, Handa N, Kobayashi I (2002) A DNA methyltransferase can protect the genome from postdisturbance attack by a restriction-modification gene complex. J Bacteriol 184:6100–6108

    Article  CAS  PubMed  Google Scholar 

  • Tazi J, Bird A (1990) Alternative chromatin structure at CpG islands. Cell 60:909–920

    Article  CAS  PubMed  Google Scholar 

  • Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (2002) Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell 9:265–277

    Article  CAS  PubMed  Google Scholar 

  • Tomatsu S, Orii KO, Islam MR, Shah GN, Grubb JH, Sukegawa K, Suzuki Y, Orii T, Kondo N, Sly WS (2002) Methylation patterns of the human beta-glucuronidase gene locus: boundaries of methylation and general implications for frequent point mutations at CpG dinucleotides. Genomics 79:363–375

    Article  CAS  PubMed  Google Scholar 

  • Tomatsu S, Orii KO, Bi Y, Gutierrez MA, Nishioka T, Yamaguchi S, Kondo N, Orii T, Noguchi A, Sly WS (2004) General implications for CpG hot spot mutations: methylation patterns of the human iduronate-2-sulfatase gene locus. Hum Mutat 23:590–598

    Article  CAS  PubMed  Google Scholar 

  • Tommasi S, Denissenko MF, Pfeifer GP (1997) Sunlight induces pyrimidine dimmers preferentially at 5-methylcytosine bases. Cancer Res 57:4727–4730

    CAS  PubMed  Google Scholar 

  • Tornaletti S, Pfeifer GP (1995) Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene 10:1493–1499

    CAS  PubMed  Google Scholar 

  • Um S, Harbers M, Benecke A, Pierrat B, Losson R, Chambon P (1998) Retinoic acid receptors interact physically and functionally with the T:G mismatch-specific thymine-DNA glycosylase. J Biol Chem 273:20728–20736

    Article  CAS  PubMed  Google Scholar 

  • Walsh CP, Bestor TH (1999) Cytosine methylation and mammalian development. Genes Dev 13:26–34

    CAS  PubMed  Google Scholar 

  • Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20:116–117

    CAS  PubMed  Google Scholar 

  • Wang KY, James Shen CK (2004) DNA methyltransferase Dnmt1 and mismatch repair. Oncogene 23:7898–7902

    CAS  PubMed  Google Scholar 

  • Waters TR, Swann PF (1998) Kinetics of the action of thymine DNA glycosylase. J Biol Chem 273:20007–20014

    Article  CAS  PubMed  Google Scholar 

  • Waters TR, Swann PF (2000) Thymine-DNA glycosylase and G to A transition mutations at CpG sites. Mutat Res 462:137–147

    CAS  PubMed  Google Scholar 

  • Waters TR, Gallinari P, Jiricny J, Swann PF (1999) Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. J Biol Chem 274:67–74

    Article  CAS  PubMed  Google Scholar 

  • Wiebauer K, Jiricny J (1989) In vitro correction of G.T mispairs to G.C pairs in nuclear extracts from human cells. Nature 339:234–236

    Article  CAS  PubMed  Google Scholar 

  • Wiebauer K, Jiricny J (1990) Mismatch-specific thymine DNA glycosylase and DNA polymerase beta mediate the correction of G. T mispairs in nuclear extracts from human cells. Proc Natl Acad Sci U S A 87:5842–5845

    CAS  PubMed  Google Scholar 

  • Wilson GG, Murray NE (1991) Restriction and modification systems. Annu Rev Genet 25:585–627

    Article  CAS  PubMed  Google Scholar 

  • Wolffe AP, Jones PL, Wade PA (1999) DNA demethylation. Proc Natl Acad Sci U S A 96:5894–5896

    Article  CAS  PubMed  Google Scholar 

  • Wong E, Yang K, Kuraguchi M, Werling U, Avdievich E, Fan K, Fazzari M, Jin B, Brown AM, Lipkin M, Edelmann W (2002) Mbd4 inactivation increases Cright-arrowT transition mutations and promotes gastrointestinal tumor formation. Proc Natl Acad Sci U S A 99:14937–14942

    CAS  PubMed  Google Scholar 

  • Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291:1284–1289

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Gehring M, Choi Y, Margossian L, Pu H, Harada JJ, Goldberg RB, Pennell RI, Fischer RL (2003) Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev Cell 5:891–901

    Article  CAS  PubMed  Google Scholar 

  • Xu GL, Bestor TH, Bourc’his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–191

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Koyama T, Ohwada S, Tago K, Sakamoto I, Yoshimura S, Hamada K, Takeyoshi I, Morishita Y (2002) Frameshift mutations in the MBD4/MED1 gene in primary gastric cancer with high-frequency microsatellite instability. Cancer Lett 181:115–120

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Walsh CW, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  CAS  PubMed  Google Scholar 

  • Yoon HG, Chan DW, Reynolds AB, Qin J, Wong J (2003) N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 12:723–734

    Article  CAS  PubMed  Google Scholar 

  • Zell R, Fritz HJ (1987) DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues. EMBO J 6:1809–1815

    CAS  PubMed  Google Scholar 

  • Zhu B, Zheng Y, Angliker H, Schwarz S, Thiry S, Siegmann M, Jost JP (2000a) 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res 28:4157–4165

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Zheng Y, Hess D, Angliker H, Schwarz S, Siegmann M, Thiry S, Jost JP (2000b) 5-Methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc Natl Acad Sci U S A 97:5135–5139

    CAS  PubMed  Google Scholar 

  • Zhu B, Benjamin D, Zheng Y, Angliker H, Thiry S, Siegmann M, Jost JP (2001) Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proc Natl Acad Sci U S A 98:5031–5036

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walsh, C.P., Xu, G.L. (2006). Cytosine Methylation and DNA Repair. In: Doerfler, W., Böhm, P. (eds) DNA Methylation: Basic Mechanisms. Current Topics in Microbiology and Immunology, vol 301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31390-7_11

Download citation

Publish with us

Policies and ethics