Skip to main content

Longitudinal Dunes (or Linear Dunes)

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahrens CJ, Titus TN (2013) Mineral analysis of Martian dunes: sediment composition of Martian dune fields using the thermal emission spectrometer. 44th Lunar Planet Sci Conf, LPI contribution no. 1719, p 2096

    Google Scholar 

  • Andreotti B, Fourrière A, Ould-Kaddour F, Murray B, Claudin P (2009) Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature 457:1120–1123. doi:10.1038/nature07787

    Article  Google Scholar 

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, London

    Google Scholar 

  • Barnes JW, Brown RH, Soderblom L, Sotin C, Le Mouèlic S, Rodriguez S, Jaumann R, Beyer RA, Buratti BJ, Pitman K, Baines KH, Clark R, Nicholson P (2008) Spectroscopy, morphometry, and photoclinometry of Titan’s dunefields from Cassini/VIMS. Icarus 195:400–414. doi:10.1016/j.icarus.2007.12.006

    Article  Google Scholar 

  • Blom R, Elachi C (1981) Spaceborne and airborne imaging radar observations of sand dunes. J Geophys Res 86(B4):3061–3073. doi:10.1029/JB086iB04p03061

    Article  Google Scholar 

  • Blom R, Elachi C (1987) Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images. J Geophys Res 92(B8):7877–7889. doi:10.1029/JB092iB08p07877

    Article  Google Scholar 

  • Blumberg DG (1998) Remote sensing of desert dune forms by polarimetric synthetic aperture radar (SAR). Remote Sens Environ 65(2):204–216

    Article  Google Scholar 

  • Bourke MC (2006) A new model for linear dune formation: merged Barchan convoys on Mars. Lunar Planet Sci Conf XXXVI, abstract #2432, Houston

    Google Scholar 

  • Bourke MC, Lancaster N, Fenton LK, Parteli EJR, Zimbelman JR, Radebaugh J (2010) Extraterrestrial dunes: an introduction to the special issue on planetary dune systems. Geomorphology 121:1–14

    Article  Google Scholar 

  • Breed CS, Grow T (1979) Morphology and distribution of dunes in sand seas observed by remote sensing. In: McKee ED (ed) A study of global sand seas. United States Government Printing Office, Washington, DC, pp 253–304

    Google Scholar 

  • Breed CS, Fryberger SC, Andrews S, McCauley C, Lennartz F, Gebel D, Horstman K (1979) Regional studies of sand seas using LANDSAT (ERTS) imagery. In: McKee ED (ed) A study of global sand seas. United States Government Printing Office, Washington, DC, pp 305–398

    Google Scholar 

  • Bristow CS, Bailey SD, Lancaster N (2000) The sedimentary structure of linear sand dunes. Nature 406(6791):56–59

    Article  Google Scholar 

  • Bullard JE, Thomas DSG, Livingstone I, Wiggs G (1995) Analysis of linear sand dune morphological variability, southwestern Kalahari Desert. Geomorphology 11:189–203

    Article  Google Scholar 

  • Cardinale M, Komatsu G, Flahaut J (2011) Large dark dunes in Moreux Crater, Mars: insights into their geometry and composition. American Geophysical Union, fall meeting 2011, abstract #P23A-1703

    Google Scholar 

  • Cornwall C, Titus TN (2010) Compositional analysis of 21 Martian equatorial dune fields and possible sand sources. Second international planetary dunes workshop: planetary analogs – integrating models, remote sensing, and field data, LPI contribution no. 1552, pp 17–18

    Google Scholar 

  • Craddock RA (2011) Aeolian processes on the terrestrial planets: recent observations and future focus. Prog Phys Geogr 1–15. doi:10.1177/0309133311425399

    Google Scholar 

  • Edgett KS, Blumberg DG (1994) Star and linear dunes on Mars. Icarus 112(2):448–464

    Article  Google Scholar 

  • Edgett KS, Malin MC (2000) MGS MOC images of seif dunes in the north polar region of Mars. 31st Lunar Planet Sci Conf, abstract #1070, Houston

    Google Scholar 

  • El-Baz F (1981) Formation and evolution of surface features in Egypt’s Western desert: a summary of Martian analogies, Third international colloquium on Mars, LPI contribution 441, 68

    Google Scholar 

  • El-Baz F, Breed CS, Grolier MJ, McCauley JF (1979) Eolian features in the western desert of Egypt and some applications to Mars. J Geophys Res 84:8205–8221. doi:10.1029/JB084iB14p08205

    Article  Google Scholar 

  • Feldman WC, Bourke MC, Elphic RC, Maurice S, Prettyman TH, Lawrence DJ, Hagerty JJ (2007) Constraints on the structure and composition of sand dunes within Olympia Undae using Mars Odyssey neutron spectrometer data. 38th Lunar Planet Sci Conf, LPI contribution no. 1338, p 2311

    Google Scholar 

  • Fitzsimmons KE, Magee JW, Amos K (2009) Characterisation of aeolian sediments from the Strzelecki and Tirari Deserts, Australia: implications for reconstructing palaeoenvironmental conditions. Sediment Geol 218:61–73

    Article  Google Scholar 

  • Fryberger SG (1979) Dune forms and wind regime. In: McKee ED (ed) A study of global sand seas. United States Government Printing Office, Washington, DC, pp 137–170

    Google Scholar 

  • Gaber A, Koch M, El-Baz F (2009) Textural and compositional characterization of Wadi Feiran deposits, Sinai Peninsula, Egypt, using radarsat-1, PALSAR, SRTM and ETM + Data. Remote Sens 2(1):52–75. doi:10.3390/rs2010052

    Article  Google Scholar 

  • Gardin E, Allemand P, Quantin C, Silvestro S, Delacourt C (2012) Dune fields on Mars: recorders of a climate change? Planet Space Sci 60:314–321

    Article  Google Scholar 

  • Glenn M (1979) Glossary. In: McKee ED (ed) A study of global sand seas. United States Government Printing Office, Washington, DC, pp 399–408

    Google Scholar 

  • Greeley R, Arvidson RE, Elachi C, Geringer MA, Plaut JJ, Saunders RS, Schubert G, Stofan ER, Thouvenot EJP, Wall SD (1992) Aeolian features on Venus – preliminary Magellan results. J Geophys Res 97(E8):13319–13345

    Article  Google Scholar 

  • Hanna SR (1969) The formation of longitudinal sand dunes by large helicoidal eddies in the atmosphere. J Appl Meteorol 8:874–883

    Article  Google Scholar 

  • Harari Z (1996) Ground-penetrating radar (GPR) for imaging stratigraphic features and groundwater in sand dunes. J Appl Geophys 36(1):43–52. doi:10.1016/S0926-9851(96)00031-6

    Article  Google Scholar 

  • Heggy E, Clifford SM, Farr TG, Dinwiddie CL, Grimm RE (2006) Radar investigations of planetary and terrestrial environments. J Geophys Res 111, E6, CiteID E06S01. doi:10.1029/2006JE002759

    Google Scholar 

  • Hesse PP (2010) The Australian desert dunefields: formation and evolution in an old, flat, dry continent. In: Bishop P, Pillans B (eds) Australian landscapes. Geological Society, London, pp 141–163

    Google Scholar 

  • Hollands CB, Nanson GC, Jones BG, Bristow CS, Price DM, Pietsch TJ (2006) Aeolian–fluvial interaction: evidence for Late Quaternary channel change and wind-rift linear dune formation in the northwestern Simpson Desert, Australia. Quat Sci Rev 25:142–162

    Article  Google Scholar 

  • Hugenholtz CH, Levin N, Barchyn TE, Baddock MC (2012) Remote sensing and spatial analysis of aeolian sand dunes: a review and outlook. Earth Sci Rev 111(3):319–334. doi:10.1016/j.earscirev.2011.11.006

    Article  Google Scholar 

  • King D (1960) The sand ridge deserts of South Australia and related aeolian landforms of the Quaternary arid cycles. Trans R Soc S Aust 83:99–108

    Google Scholar 

  • Lancaster N (1995) Dune morphology and morphometry. In: Geomorphology of desert dunes. Routledge London and New York

    Google Scholar 

  • Lancaster N (2005) Aeolian erosion, transport and deposition,ë­±inë­±Selley, R.C., Robin, L., Cocks, M., and Plimer, I.R., eds., Encyclopedia of Geology: Oxford, Elsevier, p. 612–627

    Google Scholar 

  • Lancaster N (2006) Linear dunes on Titan. Science 312(5774):702–703. doi:10.1126/science.1126292

    Article  Google Scholar 

  • Lancaster N, Gaddis L, Greeley R (1992) New airborne imaging radar observations of sand Dunes: Kelso Dunes, California. Remote Sens Environ 39(3):233–238. doi:10.1016/0034-4257(92)90088-2

    Article  Google Scholar 

  • Lancaster N, Kocurek G, Singhvi A, Pandey V, Deynoux M, Ghienne J, Lo K (2002) Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara Desert of Mauritania. Geology 30:991–994

    Article  Google Scholar 

  • Le Gall A, Janssen MA, Wye LC, Hayes AG, Radebaugh J, Savage C, Zebker H, Lorenz RD, Lunine JI, Kirk RL, Lopes RMC, Wall S, Callahan P, Stofan ER, Farr T, The Cassini Radar Team (2011) Cassini SAR, radiometry, scatterometry and altimetry observations of Titan’s dune fields. Icarus 213:608–624. doi:10.1016/j.icarus.2011.03.026

    Article  Google Scholar 

  • Le Gall A, Hayes AG, Ewing R, Janssen MA, Radebaugh J, Savage C, Encrenaz P, The Cassini Radar Team (2012) Latitudinal and altitudinal controls of Titan’s dune field morphometry. Icarus 217:231–242. doi:10.1016/j.icarus.2011.10.024

    Article  Google Scholar 

  • Lee P, Thomas PC (1995) Longitudinal dunes on Mars: relation to current wind. J Geophys Res 100(E3):5381–5395. doi:10.1029/95JE00225

    Article  Google Scholar 

  • Lorenz RD, Radebaugh J (2009) Global pattern of Titan’s dunes: radar survey from the Cassini prime mission. Geophys Res Lett 36(3):L03202. doi:10.1029/2008GL036850

    Article  Google Scholar 

  • Lorenz RD, Wall S, Radebaugh J, Boubin G, Reffet E, Janssen M, Stofan E, Lopes R, Kirk R, Elachi C, Lunine J, Mitchell K, Paganelli F, Soderblom L, Wood C, Wye L, Zebker H, Anderson Y, Ostro S, Allison M, Boehmer R, Callahan P, Encrenaz P, Ori GG, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson W, Kelleher K, Muhleman D, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Stiles B, Vetrella S, Flamini E, West R (2006) The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312(5774):724–727

    Article  Google Scholar 

  • McKee ED (1979) Introduction to a study of global sand seas. In: McKee ED (ed) A study of global sand seas. U.S. geological survey professional paper 1052. United States Department of the Interior, Washington DC

    Google Scholar 

  • Neish CD, Lorenz RD, Kirk RL, Wye LC (2010) Radarclinometry of the sand seas of Africa’s Namibia and Saturn’s moon Titan. Icarus 208:385–394. doi:10.1016/j.icarus.2010.01.023

    Article  Google Scholar 

  • Parteli EJR, Duran O, Tsoar H, Schwammle V, Herrmann H (2009) Dune formation under bimodal winds. Proc Natl Acad Sci U S A 106:52. doi:10.1073/pnas.0808646106

    Article  Google Scholar 

  • Pye K, Tsoar H (1990) Aeolian sand and sand dunes. Unwin Hyman, London

    Book  Google Scholar 

  • Radebaugh J, Lorenz RD, Lunine JI, Wall SD, Boubin G, Reffet E, Kirk RL, Lopes RM, Stofan ER, Soderblom L, Allison M, Janssen M, Paillou P, Callahan P, Spencer C, The Cassini Radar Team (2008) Dunes on Titan observed by Cassini Radar. Icarus 194:690–703. doi:10.1016/j.icarus.2007.10.015

    Article  Google Scholar 

  • Radebaugh J, Lorenz R, Farr T, Paillou P, Savage C, Spencer C (2010) Linear dunes on Titan and earth: initial remote sensing comparison. Geomorphology 121:122–132

    Article  Google Scholar 

  • Rodriguez SA, Garcia A, Lucas T, Appéré A, Le Gall E, Reffet L, Le Corre S, Le Mouélic T, Cornet S, Courrech du Pont C, Narteau O, Bourgeois J, Radebaugh K, Arnold JW, Barnes K, Stephan R, Jaumann C, Sotin RH, Brown RD, Lorenz EP, Turtle (2014). Global mapping and characterization of Titan’s dune fields with Cassini: correlation between RADAR and VIMS observations. Icarus 230, 168–179.

    Google Scholar 

  • Rubin DM, Hesp PA (2009) Multiple origins of linear dunes on Earth and Titan. Nat Geosci 2. doi:10.1038/NGEO610

    Google Scholar 

  • Rubin DM, Hunter RE (1985) Why deposits of longitudinal dunes are rarely recognised in the geologic record. Sedimentology 32:147–157

    Article  Google Scholar 

  • Rubin DM, Hunter RE (1987) Bedform alignment in directionally varying flows. Science 237:276–278

    Article  Google Scholar 

  • Schatz V, Tsoar H, Edgett KS, Parteli EJR, Herrmann HJ (2006) Evidence for indurated sand dunes in the Martian north polar region. J Geophys Res-Planets 111:E04006

    Google Scholar 

  • Sharma P, Heggy E, Farr TG, Radebaugh J (2013) Exploring the inner structure of Titan’s dunes: implications for understanding Paleo-Wind regimes. In: 44th Lunar Planet Sci Conf, LPI contribution no. 1719, p 1821

    Google Scholar 

  • Silvestro S, Vaz D, Ewing E, Rossi AP, Fenton LK, Michaels TI, Flahaut J, Geissler PE (2013) Pervasive Aeolian activity along curiosity’s traverse in Gale crater (Mars). Geology. doi:10.1130/G34162.1

    Google Scholar 

  • Soderblom LA, Baines KH, Buratti BJ, Elachi C, Janssen MA, Lopes RM, Wall SD (2007) Correlations between Cassini VIMS spectra and RADAR SAR images: implications for Titan’s surface composition and the character of the Huygens Probe Landing Site. Planet Space Sci 55:2025–2036. doi:10.1016/j.pss.2007.04.014

    Article  Google Scholar 

  • Thomas D (1989) Arid zone geomorphology. Belhaven, London

    Google Scholar 

  • Tirsch D (2008) Dark dunes on Mars. Dissertation. Freie Universität, Berlin

    Google Scholar 

  • Tokano T (2010) Relevance of fast westerlies at equinox for the eastward elongation of Titan’s dunes. Aeolian Res 2(2):113–127

    Article  Google Scholar 

  • Tsoar H (1978) The dynamics of longitudinal sand dunes: final technical report. European Research Office, US Army, London

    Google Scholar 

  • Tsoar H (1983) Dynamic processes acting on a longitudinal (seif) sand dune. Sedimentology 30:567–578

    Article  Google Scholar 

  • Tsoar H (2001) Types of Aeolian sand dunes and their formation. In: Balmforth NJ, Provenzale A (eds) Geomorphological fluid mechanics, vol 582, Lecture notes in physics. Springer-Verlag Berlin Heidelberg, p. 403–429

    Google Scholar 

  • Tsoar H, Greeley R, Peterfreund AR (1979) Mars: the north polar sand sea and related wind patterns. J Geophys Res 84:8167–8180

    Article  Google Scholar 

  • Tsoar H, Blumberg DG, Stoler Y (2004) Elongation and migration of sand dunes. Geomorphology 57:293–302

    Article  Google Scholar 

  • Tsoar H (2008) Linear dunes on Earth and Mars - Similarity and Dissimilarity. Planetary Dunes Workshop, Alamogordo, New Mexico, abstract 7001

    Google Scholar 

  • Warner NH, Farmer JD (2008) Importance of aeolian processes in the origin of the north polar chasmata, Mars. Icarus 196(2):368–384

    Article  Google Scholar 

  • Wasson RJ, Hyde R (1983) Factors determining desert dune type. Nature 304:337–339

    Article  Google Scholar 

  • Wasson RJ, Fitchett K, Mackey B, Hyde R (1988) Large-scale patterns of dune type, spacing and orientation in the Australian continental dunefield. Aust Geogr 19:89–104

    Article  Google Scholar 

  • Wiggs G (2001) Desert dune processes and dynamics. Progr Phys Geogr 25:53–79

    Article  Google Scholar 

  • Wopfner H, Twidale CR (2001) Australian desert dunes: wind rift or depositional origin? Aust J Earth Sci 48:239–244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jani Radebaugh .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Radebaugh, J., Sharma, P., Korteniemi, J., Fitzsimmons, K.E. (2014). Longitudinal Dunes (or Linear Dunes). In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_460-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_460-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics