Skip to main content

Neurotransmitter Release

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 184))

Neurons send out a multitude of chemical signals, called neurotransmitters, to communicate between neurons in brain, and between neurons and target cells in the periphery. The most important of these communication processes is synaptic transmission, which accounts for the ability of the brain to rapidly process information, and which is characterized by the fast and localized transfer of a signal from a presynaptic neuron to a postsynaptic cell. Other communication processes, such as the modulation of the neuronal state in entire brain regions by neuromodulators, provide an essential component of this information processing capacity. A large number of diverse neurotransmitters are used by neurons, ranging from classical fast transmitters such as glycine and glutamate over neuropeptides to lipophilic compounds and gases such as endocannabinoids and nitric oxide. Most of these transmitters are released by exocytosis, the i.e. the fusion of secretory vesicles with the plasma membrane, which exhibits distinct properties for different types of neurotransmitters. The present chapter will provide an overview of the process of neurotransmitter release and its historical context, and give a reference point for the other chapters in this book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnati LF, Zoli M, Stromberg I, Fuxe K (1995) Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69:711-26

    Article  CAS  PubMed  Google Scholar 

  • Brock JA, Cunnane TC (1987) Relationship between the nerve action potential and transmitter release from sympathetic postganglionic nerve terminals. Nature 326:605-7

    Article  CAS  PubMed  Google Scholar 

  • Brenner S. (1974) The genetics of Caenorhabditis elegans. Genetics 77:71-94

    CAS  PubMed  Google Scholar 

  • Castillo PE, Schoch S, Schmitz F, S üdhof TC, Malenka RC (2002) RIM1α is required for presynaptic long-term potentiation. Nature 415:327-30

    Article  CAS  PubMed  Google Scholar 

  • Diana MA, Marty A (2004) Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). Br J Pharmacol 42: 9-19

    Article  Google Scholar 

  • Du Bois-Reymond E (1877) Gesammelte Abhandlungen zur Allgemeinen Muskel- und Nervenphysik. 2 vols, Leipzig: von Veit Verlag.

    Google Scholar 

  • Dulubova I, Khvotchev M, Liu S, Huryeva I, S üdhof TC, Rizo J (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci USA 104:2697-2702

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, S üdhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41-9

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681-98

    Article  CAS  PubMed  Google Scholar 

  • Foster M (1897) A textbook of physiology, 7th ed., Part III. London: Macmillan

    Google Scholar 

  • Gasnier B (2000) The loading of neurotransmitters into synaptic vesicle. Biochimie 82:327-37

    Article  CAS  PubMed  Google Scholar 

  • Giraudo CG, Eng WS, Melia TJ, Rothman JE (2006) A clamping mechanism involved in SNAREdependent exocytosis. Science 313:676-80

    Article  CAS  PubMed  Google Scholar 

  • Hata Y, Slaughter CA, S üdhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366:347-351

    Article  CAS  PubMed  Google Scholar 

  • Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE (1997) Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90:523-35

    Article  CAS  PubMed  Google Scholar 

  • Harata NC, Aravanis AM, Tsien R (2006) Kiss-and-run and full-collapse fusion as modes of exoendocytosis in neurosecretion. J Neurochem 97:1546-70

    Article  CAS  PubMed  Google Scholar 

  • Hosaka M, S üdhof TC (1998) Synapsins I and II are ATP-binding proteins with differential Ca2+ regulation. J Biol Chem 273:1425-9

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Lang T, S üdhof TC (2003) Membrane fusion. Cell 112:519-33

    CAS  Google Scholar 

  • Katz B (1969) The release of neural transmitter substances. Liverpool: Liverpool University Press Krause W (1863) Über die Endigung der Muskelnerven. Z Rat Med 18:136-60

    Google Scholar 

  • Kühne W (1862) Über die peripherischen Endorgane der motorischen Nerven. Leipzig: Engelmann

    Google Scholar 

  • Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256: 677-9

    Article  CAS  PubMed  Google Scholar 

  • Loewi O (1921) Uber humorale Ubertragbarkeit der Herznervenwirkung. Pfl ügers Arch. 189: 239-42

    Article  Google Scholar 

  • Malenka RC, Siegelbaum SA (2001) Synaptic plasticity. In Synapses (Cowan MW, S üdhof TC, Stevens CF, eds), The Johns Hopkins University Press, Baltimore, pp 393-453

    Google Scholar 

  • Meinrenken CJ, Borst JG, Sakmann B (2003) Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J Physiol 547:665-89

    CAS  PubMed  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799-802

    Article  CAS  PubMed  Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyata T, Numa S (1982) Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299:793-7

    Article  CAS  PubMed  Google Scholar 

  • Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205-15

    Article  CAS  PubMed  Google Scholar 

  • Perin MS , Fried VA, Mignery GA, Jahn R, S üdhof TC (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345:260-3

    Article  CAS  PubMed  Google Scholar 

  • Quik M, McIntosh JM (2006) Striatal alpha6 nicotinic acetylcholine receptors: potential targets for Parkinson’s disease therapy. J Pharmacol Exp Ther 316:481-9

    Article  CAS  PubMed  Google Scholar 

  • Reim K, Mansour M, Varoqueaux F, McMahon HT, S üdhof TC, Brose N, Rosenmund C (2001) Complexins regulate a late step in Ca2+ -dependent neurotransmitter release. Cell 104:71-81

    Article  CAS  PubMed  Google Scholar 

  • Rizo J, S üdhof TC (2002) Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 3: 641-53

    CAS  PubMed  Google Scholar 

  • Rozov A, Burnashev N, Sakmann B, Neher E (2001) Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J Physiol 531:807-26

    Article  CAS  PubMed  Google Scholar 

  • Salio C, Lossi L, Ferrini F, Merighi A. (2006) Neuropeptides as synaptic transmitters. Cell Tissue Res 326:583-98

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ. (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183-95

    Article  CAS  PubMed  Google Scholar 

  • Silberberg G, Grillner S, LeBeau FE, Maex R, Markram H (2005) Synaptic pathways in neural microcircuits. Trends Neurosci 28:541-51

    Article  CAS  PubMed  Google Scholar 

  • Stjarne L (2000) Do sympathetic nerves release noradrenaline in “quanta”? J Auton Nerv Syst 81:236-43

    Article  CAS  PubMed  Google Scholar 

  • S üdhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27, 509-47

    Article  Google Scholar 

  • Tang J, Maximov A, Shin O-H, Dai H, Rizo J, S üdhof TC (2006) A complexin/synaptotagmin-1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175-87

    Article  CAS  PubMed  Google Scholar 

  • Takamori S (2006) VGLUTs: ‘exciting’ times for glutamatergic research? Neurosci Res 55:343-51

    Article  CAS  PubMed  Google Scholar 

  • Tobaben S, Thakur P, Fernandez-Chacon R, S üdhof TC, Rettig J, Stahl B (2001) A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31:987-99

    Article  CAS  PubMed  Google Scholar 

  • Trudeau LE (2004) Glutamate co-transmission as an emerging concept in monoamine neuron function. J Psychiatry Neurosci 29:296-310

    PubMed  Google Scholar 

  • Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, et al. (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864-9

    Article  CAS  PubMed  Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92-8

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759-72

    Article  CAS  PubMed  Google Scholar 

  • Whittaker VP, Sheridan MN (1965) The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles. J Neurochem 12:363-72

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Mashimo T, S üdhof TC (2007) Synaptotagmin-1, -2, and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54:567-81

    Article  CAS  PubMed  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355-405

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Süudhof, T.C. (2008). Neurotransmitter Release. In: Südhof, T.C., Starke, K. (eds) Pharmacology of Neurotransmitter Release. Handbook of Experimental Pharmacology, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74805-2_1

Download citation

Publish with us

Policies and ethics