Skip to main content

The Dramatic Drop of the Dead Sea: Background, Rates, Impacts and Solutions

  • Chapter
  • First Online:
Macro-engineering Seawater in Unique Environments

Abstract

Up to the 1970s, freshwater input in the DS was able to maintain a less salty topmost water layer (epilimnion) over-riding a salt-saturated bottom water layer (hypolimnion). The epilimnion was ~40 m deep, had a seasonal temperature variation of between 19 and 37°C and a salinity of about 30%. The water was particularly rich in sulphate and bicarbonate. Below the density interface (pycnocline, 40–100 m of depth) the hypolimnion was characterized by a uniform temperature of ~22°C and a salinity of >34%; it contained hydrogen sulphide and high concentrations of magnesium, potassium, chlorine, and bromine. The hypolimnion was unmixed for a long time. It is saturated with sodium chloride that precipitates as halite on the bottom (Abed 1985). The unique mineral composition of the DS water and its high salt concentration make it suitable for the production of potassium and magnesium. In addition, the high salt concentration provides natural cures against various skin sicknesses and the high oxygen content and low UVB exposure make the DS a prime area for therapeutic tourism (Abdel-Fattah and Pingitore 2009; Charlier and Chaineux 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah A, Pingitore E (2009) Low levels of toxic elements in Dead Sea black mud and mud-derived cosmetic products. Environ Geochem Health 31:487–492

    Article  CAS  Google Scholar 

  • Abed AM (1985) The geology of the Dead Sea. Dar Al-Urqam, Amman (in Arabic)

    Google Scholar 

  • Abed AM (2000) Geology of Jordan, its water and environments. Jordanian Geologists Association, Amman (In Arabic)

    Google Scholar 

  • Abed AM, Yaghan R (2000) On the paleoclimate of Jordan during the last glacial maximum. Palaeogeogr Palaeoclimatol Palaeoecol 160:23–33

    Article  Google Scholar 

  • Abed AM, Carbonel C, Collina-Girard J, Fontugne M, Petit-Maire N, Jean-Claude R, Yasin S (2000) Un paleolac du dernier interglaciaire Pleistocene dans l’extreme-sud hyperarid de la Jordanie. C R Acad Sci Paris Sciences de la Terrauet des Planetes/Earth Planet Sci 330:259–264

    CAS  Google Scholar 

  • Abed AM, Yasin S, Sadaqah R (2008) The paleoclimate of the eastern Desert of Jordan during the marine isotope stage 9. Quat Res 69:458–468

    Article  CAS  Google Scholar 

  • Abelson M, Yechieli Y, Crouvi O, Baer G, Wachs D, Bein A (2006) Evolution of the Dead Sea sinkholes. In: Enzel Y, Agnon A, Stein M (eds) New frontier in Dead Sea paleoenvironmental research. Geological Society of America, Special Paper 401, pp 241–253

    Google Scholar 

  • Abou Eleanean KM, Aldamegh KS, Zharan HM, Hussein HM (2009) Regional waveform inversion of 2004 February 11 and 2007 February 09 Dead Sea earthquakes. Geophy J Int 176:185–199

    Article  Google Scholar 

  • Abou Karaki N, Closson D, Salameh E, de Tervaent M, Barjous M (2005) Natural, induced and environmental hazards along the Dead Sea coast, Jordan. Hydrogeologie und Umwelt 14:1–25

    Google Scholar 

  • Abu Ghazleh S, Kempe S (2009) Geomorphology of Lake Lisan terraces along the eastern coast of the Dead Sea, Jordan. Geomorphology 108:246–263

    Article  Google Scholar 

  • Abu Ghazleh S, Hartmann J, Jansen N, Kempe S (2009) Water input requirements of the rapidly shrinking Dead Sea. Naturwissenschaften 96:637–643

    Article  CAS  Google Scholar 

  • Al-Weshah RA (2000) The water balance of the Dead Sea: an integrated approach. Hydrol Process 14:145–154

    Article  Google Scholar 

  • Al-Zoubi A, Shulman A, Ben-Avraham Z (2002) Seismic ref lection profiles across the southern Dead Sea basin. Tectonophysics 346:61–69

    Article  Google Scholar 

  • Amit R, Zilberman E, Enzel Y, Porat N (2002) Paleoseismic evidence for time dependency of seismic response on a fault system in the southern Arava Valley, Dead Sea rift, Israel. Geol Surv Israel 114(2):192–206

    Google Scholar 

  • Bender F (1974) Geology of Jordan. Borntraeger, Berlin

    Google Scholar 

  • Beyth M, Gavrieli I, Anati D, Katz O (1993) Effects of the December 1991–May 1992 floods on the Dead Sea vertical structure. Israel J Earth Sci 42:45–47

    Google Scholar 

  • Bowen R, Jux U (1987) Afro-Arabian geology. Chapman and Hall, London

    Google Scholar 

  • Brew G, Brarazangi M, Al-Maleh K, Sawaf T (2001) Tectonic and geologic evolution of Syria. Geoarabia 6:573–616

    Google Scholar 

  • Charlier RH, Chaineux M-CP (2009) The healing sea: a sustainable coastal ocean resource: thalasssotherpy. J Coast Res 25:838–856

    Article  Google Scholar 

  • Closson D, Abou Karaki N, Klinger Y, Hussein MJ (2005) Subsidence and sinkhole hazard assessment in the southern Dead Sea area, Jordan. Pure Appl Geophys 162:221–248

    Article  Google Scholar 

  • Closson D, Abou Karaki N, Hallot F (2010) Landslides along the Jordanian Dead Sea coast triggered by the lake level lowering. Environ Earth Sci 59:1417–1430

    Article  CAS  Google Scholar 

  • El-Hasan T, Momani K, Al-Nawayseh J, Al-Nawayseh K (2008) Dead Sea influence on the chemical and mineralogical characteristics of the dry deposition fallen over the eastern highland of central Jordan. Env Geol 54:103–110

    Article  CAS  Google Scholar 

  • FoEME (2005) Crossing the Jordan, Concept document to rehabilitate and promote prosperity to the Lower Jordan River Valley, 32 pp

    Google Scholar 

  • Galli P (1999) Active tectonics along the Wadi Araba-Jordan Valley transform fault. J Geophys Res 104:2777–2796

    Article  Google Scholar 

  • Gavrieli A, Bein A, Oren A (2005) The expected impact of the Peace Conduct Project (The Red Sea-Dead Sea pipeline) on the Dead Sea. Mitig Adapt Strateg Glob Change 10:3–22

    Article  Google Scholar 

  • Haase-Schramm A, Goldstein SL, Stein M (2003) U-Th dating of Lake Lisan (late Pleistocene dead sea) aragonite and implications for glacial east Mediterranean climate change. Geochim Cosmochim Acta 68:985–1005

    Article  Google Scholar 

  • Hoffman D (2008) Greening the water Dead Sea-Red Sea conveyance project, ADAN Technical and economic services

    Google Scholar 

  • Huckriede R, Wiesemann G (1968) Der jungpleistozane Pluvial-See von El Jafr und weitere Daten zum Quartar Jordaniens. Geologica et Palaeontologica 2:73–95

    Google Scholar 

  • Ichinose GA, Begin ZB (2004) Simulation of Tsunamis and Lake Seiches for the Late Pleistocene Lake Lisan and the Dead Sea. Geol Surv Israel GSI/7/04: 1–50

    Google Scholar 

  • Katz A, Starinsky A (2009) Geochemical history of the Dead Sea. Aquat Geochem 15:159–194

    Article  CAS  Google Scholar 

  • Katz A, Kolodny Y, Nissenbaum A (1977) The geochemical evolution of the Pleistocene Lake Lisan–Dead Sea system. Geochim Cosmochim Acta 41:1609–1626

    Article  CAS  Google Scholar 

  • Ken-Tor R, Agnon A, Enzel Y, Stein M, Marco S, Negendank WFG (2001) High-resolution geological record of historic earthquakes in the Dead Sea basin. J Geophys Res 106:2221–2234

    Article  Google Scholar 

  • Khlaifat A (2008) Dead Sea rate of evaporation. American Journal of Applied Sciences 5(8): 934–942

    Article  Google Scholar 

  • Khlaifat A, Hogan M, Phillip G, Nawayseh K, Amira J, Talafeha E (2010) Long–term monitoring of the dead sea level and brine physico-chemical parameters “from 1987 to 2008”. J Mar Syst 81:207–212

    Article  Google Scholar 

  • Klinger Y, Avouac J, Abou Karaki N, Dorbath L, Bourles D, Reyss J (2000) Slip rate on the Dead Sea transform fault in northern Araba valley, Jordan. Geophys J Int 142:755–768

    Article  Google Scholar 

  • Krenkel E (1924) Der Syrische Bogen. Zentralblatt für Mineralogie Geologie und Palaontologie 9: 274–281, and 10: 301–313

    Google Scholar 

  • Landmann G, Abu Qudaira GM, Shawabkeh K, Wrede V, Kempe S (2002) Geochemistry of Lisan and Damya Formation in Jordan and implications on palaeoclimate. Quat Int 89:45–57

    Article  Google Scholar 

  • Levy Y (1984) The influence of the admixture rate of partly evaporated Mediterranean water to the Dead Sea on the properties of gypsum that is formed in the brine. Mediterranean – Dead Sea projects, Summary of Research and Surveys. Mediterranean – Dead Sea Company 5: 279–282 (in Hebrew)

    Google Scholar 

  • Migowski C, Agnon A, Bookman R, Negendank JFW, Stein M (2004) Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustrine sediments. Earth Planet Sci Lett 222:301–314

    Article  CAS  Google Scholar 

  • Migowski C, Stein M, Prasad S, Negendank JFW, Agnon A (2006) Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quat Res 66(3):421–431

    Article  Google Scholar 

  • Neev D, Emery KO (1967) The Dead Sea, depositional processes and environments of evaporates. In: Bulletin, vol 41. Geological Survey of Israel, 147 pp

    Google Scholar 

  • Neuman HF, Kagan JE, Schwab JM, Stein M (2007) Palynology, sedimetology and palaeoecology of the late Holocene Dead Sea. Quat Sci Rev 26:1476–1498

    Article  Google Scholar 

  • Oren A (1983) Population dynamics of halobacteria in the Dead Sea water column. Limnol Oceanogr 28:1094–1103

    Article  Google Scholar 

  • Oren A, Shilo M (1985) Factors determining the development of algal and bacterial blooms in the Dead Sea: a study of simulation experiments in outdoor ponds. FEMS Microbiol Ecol 31:229–237

    Article  CAS  Google Scholar 

  • Oren A, Gurevich P, Anati DA, Barkan E, Luz B (1995) A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects. Hydrobiologia 297:173–185

    Article  CAS  Google Scholar 

  • Powell JH (1988) The geology of the Karak area, map sheet No. 3152 III. In: Geology directorate, vol 8. Natural Resources Authority, Amman, Jordan, 171 pp

    Google Scholar 

  • Quennell AM (1958) The structures and geomorphic evolution of the Dead Sea rift. Geol Soc Quart Jour Lond 14:1–24

    Article  Google Scholar 

  • Salameh HR (1997) Geomorphology of the eastern coast of the Dead Sea. Geo J 41(3):255–266

    Google Scholar 

  • Salameh E, El-Naser H (1990) Physical interpretation of the discharge coefficient of an aquifer, a maillet equation. Hydrogeologie und Umwelt, Heft 1:129–136

    Google Scholar 

  • Salameh E, El-Naser H (1999) Does the actual drop in Dead Sea level reflect the development of water sources within its drainage basin? Acta Hydrochimica et Hydrobiologica 27:5–11

    Article  CAS  Google Scholar 

  • Salameh E, El-Naser H (2000) Changes in the Dead Sea level and their impacts on the surrounding groundwater bodies. Acta Hydrochimica et Hydrobiologica 28:24–33

    Article  CAS  Google Scholar 

  • Salameh E, El-Naser H (2009) Retreat of the Dead Sea and its effect on the surrounding groundwater resources and the stability of its coastal deposits. In: Möller P, Rosenthal E, Hötzel H (eds) The water of the Jordan valley. Springer, Berlin, pp 247–264

    Chapter  Google Scholar 

  • Schirva-Schwartz M, Calvo R, Bein A, Burg A, Nof R, Baer G (2006) Red Sea-Dead Sea Conduit: geo-environmental study along the Arava Valley. Geol Surv Israel 29:1–39

    Google Scholar 

  • Steinhorn I (1983) In situ salt precipitation at the Dead Sea. Limnol Oceanogr 28:580–583

    Article  Google Scholar 

  • Stow D (2010) Vanished ocean: how tethys reshaped the world. Oxford University Press, USA, 288 pp

    Google Scholar 

  • Talafeha E (2009) Ponds superintendent, Arab Potash Company, Personal interview, Safi, Jordan, June 4th, 2009

    Google Scholar 

  • The Harza JRV Group (1996) Red Sea-Dead Sea Canal Project, Draft Prefeasibility Report, Main Report. Jordan Rift Valley Steering Committee of the Trilateral Economic Committee

    Google Scholar 

  • The Jerusalem Institute for Israel studies (2006) The Dead Sea Basin: Assessment of current situation and prospects for the future under continued Dead Sea Water-Level Decline

    Google Scholar 

  • Turner AK, Schuster RL (eds) (1996) 1996 Landslides—investigation and mitigation. National Academy Press, Washington, DC, Transportation Research Board Special Report 247, 673 pp

    Google Scholar 

  • Vardi J (1990) Mediterranean-Dead Sea Project, Historical Review; Geological Survey of Israel, GSI/9/90: 31–50

    Google Scholar 

  • Waldmann N, Starinsky A, Stein M (2007) Primary carbonates and Ca-chloride brines as monitors of a paleo-hydrological regime in the Dead Sea basin. Quat Sci Rev 26:2219–2228

    Article  Google Scholar 

  • Allen W (1855) The Dead Sea, A new route to India; with other fragments. Brown ad Co, London, pp 374

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrazad Abu Ghazleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abu Ghazleh, S., Abed, A.M., Kempe, S. (2010). The Dramatic Drop of the Dead Sea: Background, Rates, Impacts and Solutions. In: Badescu, V., Cathcart, R. (eds) Macro-engineering Seawater in Unique Environments. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14779-1_4

Download citation

Publish with us

Policies and ethics