Skip to main content

Plague: A Disease Which Changed the Path of Human Civilization

  • Chapter
  • First Online:
Yersinia pestis: Retrospective and Perspective

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 918))

Abstract

Plague caused by Yersinia pestis is a zoonotic infection, i.e., it is maintained in wildlife by animal reservoirs and on occasion spills over into human populations, causing outbreaks of different entities. Large epidemics of plague, which have had significant demographic, social, and economic consequences, have been recorded in Western European historical documents since the sixth century. Plague has remained in Europe for over 1400 years, intermittently disappearing, yet it is not clear if there were reservoirs for Y. pestis in Western Europe or if the pathogen was rather reimported on different occasions from Asian reservoirs by human agency. The latter hypothesis thus far seems to be the most plausible one, as it is sustained by both ecological and climatological evidence, helping to interpret the phylogeny of this bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Among the monuments recalling plague, we can mention Castel Sant’Angelo in Rome, which was originally the mausoleum of Hadrian and was converted into a castle at the beginning of the fourteenth century. Legend holds that the Archangel Michael appeared atop the mausoleum in 590 CE, sheathing his sword as a sign of the end of the plague in Rome. Other monuments of note include five plague churches in Venice, erected between the fifteenth and seventeenth centuries as vows for deliverance from some of the 70 epidemics of plague recorded in this port to the Levant. Of particular relevance is the School and Church of San Rocco (1485–1550), decorated with paintings by Tintoretto of Saint Roch’s life. St. Roch, the Christian saint especially invoked against the plague, set out from Montpellier as a mendicant pilgrim for Rome during a poorly defined epidemic of plague in the second half of the fourteenth century. He could heal sick people in the public hospitals by prayer, the sign of the cross, and the touch of his hand. To St. Roch is devoted also the Rochuscapelle in Bingen on the Rhine, a chapel erected by the city in 1677 in thanksgiving for surviving the plague of the year before. The festival of St. Roch, which is still held there every year, was notably celebrated by Goethe (Sankt-Rochus-Fest zu Bingen, Hamburger Ausgabe, Band 10, Am 16. August 1814). Other monuments of importance include the Pestsäule of Vienna, erected by Emperor Leopold I in 1687 to celebrate the end of the epidemic, and again in Vienna, a city repeatedly ravaged by the plague, one can see the Karlskirche, built after the plague of 1713 and dedicated to the plague saint, St. Carlo Borromeo. In Florence the loggia Orsanmichele (originally housing a grain market) was transformed into a church to protect the picture of the Virgin who was claimed to have saved the city from the Black Death of 1348. Also in Florence, as a consequence of the plague which badly hit the city during the second half of the fourteenth century, the cultural period of the Rinascimento (Renaissance, from the Italian for “rebirth”) took root and spread, eventually characterizing European history of the fifteenth–seventeenth centuries.

  2. 2.

    Some examples are “to avoid or hate someone or something like the plague” (Italian idiomatic expression); “to stink like the plague” and “the choice between plague and cholera” (German idiomatic expressions); “A Sunday’s child never dies of the plague” and “He who trusts a woman and leads an ass will never be free from plague” (French proverbs); “Nothing is ever well done in a hurry, except flying from the plague or from quarrels, and catching fleas” (Italian proverb); “Plague seize the hindmost” (Latin proverb); “Lies are the plague of speech” and “Forgetfulness is the plague of knowledge” (Arabic proverbs); “A stupid friend is a greater plague than a wise enemy” (Turkish proverb); “An honest wife is a treasure that lasts, a sad wife is worse than the plague” and “A new doctor is a plague on the country” (Sicilian proverbs); “It is better to murder during time of plague” (English proverb); and “If God should listen to rooks, he should send a plague to horses” (Bulgarian proverb).

  3. 3.

    Farina, Jean-Marie (1825). Précis sur les propriétés médicales de l’Eau de Cologne. Warin-Thierry.

  4. 4.

    di Coppo Stefani, Marchionne (1903). Cronica Fiorentina. Citta di Costella: Lapi. 88 pp.

  5. 5.

    In this text, Europe is defined as a geographical entity: the northwestern peninsula of the larger landmass known as Eurasia, separated from Asia by the Ural Mountains, the Ural River, and the crest of the Caucasus Mountains.

  6. 6.

    The distinction between the second and third pandemic is relevant for the western European countries where the last epidemics of the second pandemic occurred in the eighteenth century; these include the Baltic pandemic of 1709–1713, the devastating plague of Messina in 1743, and the plague of Moscow in 1770–1771. Smaller outbreaks were recorded at, e.g., Noja and Malta, ca. 1815. In Eastern Europe there were repeated epidemics throughout the eighteenth and nineteenth centuries.

  7. 7.

    Several countries in Europe have reported outbreaks of plague (see also Fig. 1.1), the first being Portugal in 1899 with the epidemic of Oporto, which likely arrived from Alexandria (Echenberg, Myron (2007). Plague ports: the global urban impact of bubonic plague, 1894–1901. New York: New York University Press. 366 pp.). Generally, the outbreaks in Europe were rapidly brought under control, with a low number of confirmed cases and deaths.

  8. 8.

    World Health Organization. WHO Report on global surveillance of epidemic-prone infectious diseases – plague [cited 2013 Apr 15]. http://www.who.int/csr/resources/publications/plague/CSR_ISR_2000_1/en/index5.html

    According to another interpretation, the third pandemic, caused by Y. pestis biovar Orientalis, ended at the middle of the last century when the WHO received notification of less than 2000–3000 human cases (during the period 1954–1997). By this interpretation, we are currently in a period of endemic plague caused by representatives of different biovars, including Orientalis (for indication about the phylogeny of current strains, see [7072]).

  9. 9.

    http://www.reuters.com/article/2015/02/11/us-health-plague-madagascar-idUSKBN0LF1LI20150211; http://outbreaknewstoday.com/plague-death-toll-in-madagascar-reaches-63-58932/

  10. 10.

    http://www.who.int/csr/resources/publications/surveillance/WHO_CDS_CSR_ISR_2000_1/en/

  11. 11.

    Erasmus in 1526 observed: “Twenty-five years ago, nothing was more fashionable in Brabant than public baths; today there are none, the new plague has taught us to avoid them.” Cited by Ashenburg, K. (2007). The dirt on clean: an unsanitized history. New York: North Point Press.

  12. 12.

    Records of autopsies can be found even earlier, see Cohn, Samuel K., Jr. (2010). Cultures of plague: medical thinking at the end of the Renaissance. Oxford: Oxford University Press. 342 pp.

  13. 13.

    Contemporaneous descriptions might have been based on the miasma framework, but seem to have been very aware that plague was contagious through human interactions. This is according to records collected in Horrox, Rosemary (1994). The Black Death. Manchester: Manchester University Press. 364 pp.

  14. 14.

    New observations support the theory that it is not the bacteria engulfed by local macrophages that cause infection. Rather, it is the few bacteria that are freely transported to the lymph nodes within minutes after a victim is bitten which are responsible. Gonzalez R.J., Lane M.C., Wagner N.J., Weening E.H., Miller V.L. (2015). Dissemination of a highly virulent pathogen: tracking the early events that define infection. PLoS Pathogens, 11(1):e1004587.

  15. 15.

    Yersin also observed that the disease was equally carried by many other mammals, including water buffaloes.

  16. 16.

    The terms “enzootic” and “epizootic” are equivalent to nonhuman endemic and epidemic conditions, respectively.

  17. 17.

    http://www.who.int/csr/resources/publications/plague/whocdscsredc992a.pdf

  18. 18.

    A case of dog-to-human transmission of pneumonic plague was recently reported (Runfola J.K., House J., Miller L., et al. (2015). Outbreak of human pneumonic plague with dog-to-human and possible human-to-human transmission – Colorado, June–July 2014. Morbidity and Mortality Weekly Report, 64:429–434).

  19. 19.

    Records from the former USSR detail 38 plague outbreaks among camels within the period 1907–1967. http://cns.miis.edu/opapers/pdfs/130904_soviet_antiplague_pdf

  20. 20.

    P. irritans is a cosmopolitan insect with a wide host spectrum, even though its common name suggests a primary affiliation with humans.

  21. 21.

    The SOI is a standardized index calculated on sea level pressure differences between Tahiti and Australia and gives information about large-scale fluctuations in air pressure across the tropical Pacific. Abnormalities of the SST in the same part of the ocean can drive El Niño (and La Niña) episodes. El Niño (La Niña) and the Southern Oscillation (ENSO) affects weather conditions in many parts of the world by sufficient modifications of the atmosphere.

  22. 22.

    http://www.who.int/csr/disease/plague/madagascar-outbreak/en/

  23. 23.

    http://infectiousdiseases.edwardworthlibrary.ie/plague/marseilles-case-study/

  24. 24.

    This is the goal of an ERC Advanced Grant (MedPlag – The medieval plagues: ecology, transmission modalities and routes of the infections. Project No.324249), of which the authors are either members or partners (Barbara Bramanti is the PI). We would like to acknowledge the ERC for support and Samuel K. Cohn Jr., Andrey Anisimov, and Boris V. Schmid for relevant comments and suggestions. The authors are indebted to Sari C. Cunningham for her valuable improvement of the manuscript.

References

  1. Avery H. Plague churches, monuments and memorials. Proc R Soc Med. 1966;59(2):110–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hatcher J. The Black Death: an intimate history. London: Weidenfeld & Nicolson; 2010.

    Google Scholar 

  3. Walløe L. Medieval and modern bubonic plague: some clinical continuities. Med Hist Suppl. 2008;52(27):59–73.

    Google Scholar 

  4. Rosen W. Justinian’s flea: plague, empire, and the birth of Europe. London: Penguin; 2007.

    Google Scholar 

  5. Little LK, Rome AAI. Plague and the end of antiquity: the pandemic of 541–750. Cambridge: Cambridge University Press in association with The American Academy in Rome; 2007.

    Google Scholar 

  6. Galvani AP, Slatkin M. Evaluating plague and smallpox as historical selective pressures for the CCR5-Δ32 HIV-resistance allele. Proc Natl Acad Sci. 2003;100(25):15276–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohn Jr SK. Epidemiology of the Black Death and successive waves of plague. Med Hist Suppl. 2008;52(27):74–100.

    Google Scholar 

  8. Liu Y. The atlas of plague and its environment in the People’s Republic of China. Beijing: Science Press; 2000.

    Google Scholar 

  9. Lien-Teh W, Chun J, Pollitzer R, Wu C. Plague: a manual for medical and public health workers. Am J Public Health Nations Health. 1936;26(10):1049–50.

    Article  Google Scholar 

  10. Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, Carniel E, Gage KL, Leirs H, Rahalison L. Plague: past, present, and future. PLoS Med. 2008;5(1):e3.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cipolla CM. Cristofano e la peste: un caso di storia del sistema sanitario in Toscana nell’età di Galileo, vol. 166. Bologna: Il mulino; 1976.

    Google Scholar 

  12. Vasold M. Die Pest. Ende eines Mythos. Theiss Verlag, Stuttgart; 2003.

    Google Scholar 

  13. Yersin A. La peste bubonique à Hong Kong. Archives de médecine navale et coloniale. 1894;62:256–61.

    Google Scholar 

  14. Shannon JG, Bosio CF, Hinnebusch BJ. Dermal neutrophil, macrophage and dendritic cell responses to Yersinia pestis transmitted by fleas. PLoS Pathog. 2015;11(3):e1004734.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barnett SA. Rat control in a plague outbreak in Malta. J Hyg. 1948;46(1):10–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mafart B, Brisou P, Bertherat E. Epidémiologie et prise en charge des épidémies de peste en Méditerranée au cours de la seconde guerre mondiale. Bulletin de la Société de Pathologie Exotique (1990). 2004;97(4):306–10.

    Google Scholar 

  17. Wherry WB. Plague among the ground squirrels of California. J Infect Dis. 1908;5(5):485–506.

    Article  Google Scholar 

  18. McCoy GW. Plague among ground squirrels in America. J Hyg. 1910;10(4):589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Benedictow OJ. Yersinia pestis, the bacterium of plague, arose in East Asia. Did it spread westwards via the Silk Roads, the Chinese maritime expeditions of Zheng He or over the vast Eurasian populations of sylvatic (wild) rodents? J Asian Hist. 2013;47(1):1–31.

    Article  Google Scholar 

  20. McNeill WH. Plagues and peoples, A peregrine book, vol. 2. Harmondsworth: Penguin; 1979. p. 99.

    Google Scholar 

  21. Lorange EA, Race BL, Sebbane F, Hinnebusch BJ. Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis. 2005;191(11):1907–12.

    Article  PubMed  Google Scholar 

  22. Salkeld DJ, Stapp P. Seroprevalence rates and transmission of plague (Yersinia pestis) in mammalian carnivores. Vector Borne Zoonotic Dis. 2006;6(3):231–9.

    Article  CAS  PubMed  Google Scholar 

  23. Mollaret HH. Remarques sur la communication de MM. Brygoo et Dodin à propos de la peste tellurique et de la peste de fouissement, Données malgaches. Bull Soc Pathol Exot Filiales (Paris). 1965;58(2):140–54.

    CAS  Google Scholar 

  24. Ayyadurai S, Houhamdi L, Lepidi H, Nappez C, Raoult D, Drancourt M. Long-term persistence of virulent Yersinia pestis in soil. Microbiology. 2008;154(Pt 9):2865–71.

    Article  CAS  PubMed  Google Scholar 

  25. Gong Z, Yu X, Liu Q, Ye R, Lu L, Xu l, Zhang J, Li C, Bai X, Fang X. Ecological-geographic landscapes of natural plague foci in China VI. Biological characteristics of natural vectors of Yersinia pestis. Chin J Epidemiol. 2012;33(008):818–22.

    Google Scholar 

  26. Qin C, Xu L, Zhang R, Liu Q, Li G, Fang X. Ecological-geographic landscapes of natural plague foci in China V. Biological characteristics of major natural reservoirs of Yersinia pestis. Chin J Epidemiol. 2012;33(7):692–7.

    Google Scholar 

  27. Fang X, Xu L, Liu Q, Zhang R. Ecological-geographic landscapes of natural plague foci in China I. Eco-geographic landscapes of natural plague foci. Chin J Epidemiol. 2011;32(12):1232–6.

    Google Scholar 

  28. Chanteau S, Ratsifasoamanana L, Rasoamanana B, Rahalison L, Randriambelosoa J, Roux J, Rabeson D. Plague, a reemerging disease in Madagascar. Emerg Infect Dis. 1998;4(1):101–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anisimov AP, Lindler LE, Pier GB. Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev. 2004;17(2):434–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hinnebusch BJ. The evolution of flea-borne transmission in Yersinia pestis. Curr Issues Mol Biol. 2005;7(2):197–212.

    CAS  PubMed  Google Scholar 

  31. Gage KL, Kosoy MY. Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol. 2005;50(50):505–28.

    Article  CAS  PubMed  Google Scholar 

  32. Samia NI, Kausrud KL, Heesterbeek H, Ageyev V, Begon M, Chan KS, Stenseth NC. Dynamics of the plague-wildlife-human system in Central Asia are controlled by two epidemiological thresholds. Proc Natl Acad Sci. 2011;108(35):14527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stenseth NC, Samia NI, Viljugrein H, Kausrud KL, Begon M, Davis S, Leirs H, Dubyanskiy VM, Esper J, Ageyev VS, et al. Plague dynamics are driven by climate variation. Proc Natl Acad Sci U S A. 2006;103(35):13110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reijniers J, Davis S, Begon M, Heesterbeek JA, Ageyev VS, Leirs H. A curve of thresholds governs plague epizootics in Central Asia. Ecol Lett. 2012;15(6):554–60.

    Article  PubMed  Google Scholar 

  35. Kausrud KL, Viljugrein H, Frigessi A, Begon M, Davis S, Leirs H, Dubyanskiy V, Stenseth NC. Climatically driven synchrony of gerbil populations allows large-scale plague outbreaks. Proc R Soc B Biol Sci. 2007;274(1621):1963–9.

    Article  Google Scholar 

  36. Hudson PJ, Cattadori IM. The Moran effect: a cause of population synchrony. Trends Ecol Evol. 1999;14(1):1–2.

    Article  PubMed  Google Scholar 

  37. Koenig WD. Global patterns of environmental synchrony and the Moran effect. Ecography. 2002;25(25):283–8.

    Article  Google Scholar 

  38. Caten JL, Kartman L. Human plague in the United States, 1900–1966. J Am Med Assoc. 1968;205(6):333–6.

    Article  CAS  Google Scholar 

  39. Tollenaere C, Rahalison L, Ranjalahy M, Duplantier JM, Rahelinirina S, Telfer S, Brouat C. Susceptibility to Yersinia pestis experimental infection in wild Rattus rattus, reservoir of plague in Madagascar. Ecohealth. 2010;7(2):242–7.

    Article  CAS  PubMed  Google Scholar 

  40. Mustafa I. Bacterial diseases of dromedaries and bactrian camels. Rev Sci Tech Int Off Epizoot. 1987;6:391–405.

    Article  Google Scholar 

  41. Blanc G, Baltazard M. Rôle des ectoparasites humains dans la transmission de la peste. Bull Acad Natl Med. 1942;126:446–8.

    Google Scholar 

  42. Gani R, Leach S. Epidemiologic determinants for modeling pneumonic plague outbreaks. Emerg Infect Dis. 2004;10(4):608–14.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Butler T. Plague gives surprises in the first decade of the 21st century in the United States and worldwide. Am J Trop Med Hyg. 2013;89(4):788–93.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Richard V, Riehm JM, Herindrainy P, Soanandrasana R, Ratsitoharina M, Rakotomanana F, Andrianalimanana S, Scholz HC, Rajerison M. Pneumonic plague outbreak, northern Madagascar, 2011. Emerg Infect Dis. 2015;21(1):8–15.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Teh WL. The second pneumonic plague epidemic in Manchuria, 1920–21: I. A general survey of the outbreak and its course. J of Hyg (Lond). 1923;21(3):262–88.

    Article  CAS  Google Scholar 

  46. Persson B. Pestens gåta: Farsoter i det tidiga 1700-talets Skåne, vol. 5. Lund: Lund University; 2001.

    Google Scholar 

  47. Perry RD, Fetherston JD. Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev. 1997;10(1):35–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Prentice MB, Rahalison L. Plague. Lancet. 2007;369(9568):1196–207.

    Article  PubMed  Google Scholar 

  49. Pollitzer R. Plague. Geneva: World Health Organization; 1954.

    Google Scholar 

  50. Pollitzer R. Plague studies. IX. Epidemiology. Bull World Health Organ. 1953;9(1):131–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Burroughs AL. Sylvatic plague studies: the vector efficiency of nine species of fleas compared with Xenopsylla cheopis. J Hyg (Lond). 1947;45(3):371–96.

    Article  CAS  PubMed Central  Google Scholar 

  52. Bacot AW, Martin CJ. LXVII. Observations on the mechanism of the transmission of plague by fleas. J Hyg (Lond). 1914;13(Suppl):423–39.

    CAS  Google Scholar 

  53. Eisen RJ, Dennis DT, Gage KL. The role of early-phase transmission in the spread of Yersinia pestis. J Med Entomol. 2015;52(6):1183–92.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, DeLeo FR, Hinnebusch BJ. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis. 2004;190(4):783–92.

    Article  PubMed  Google Scholar 

  55. Carniel E. Subtle genetic modifications transformed an enteropathogen into a flea-borne pathogen. Proc Natl Acad Sci U S A. 2014;111(52):18409–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eisen RJ, Bearden SW, Wilder AP, Montenieri JA, Antolin MF, Gage KL. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci U S A. 2006;103(42):15380–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ratovonjato J, Rajerison M, Rahelinirina S, Boyer S. Yersinia pestis in Pulex irritans fleas during plague outbreak, Madagascar. Emerg Infect Dis. 2014;20(8):1414–5.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Baltazard M, Bahmanyar M, Mostachfi P, Eftekhari M, Mofidi C. Recherches sur la peste en Inde. Bull World Health Organ. 1960;23(2–3):169–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Laudisoit A, Leirs H, Makundi RH, Van Dongen S, Davis S, Neerinckx S, Deckers J, Libois R. Plague and the human flea, Tanzania. Emerg Infect Dis. 2007;13(5):687–93.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hufthammer AK, Walløe L. Rats cannot have been intermediate hosts for Yersinia pestis during medieval plague epidemics in northern Europe. J Archaeol Sci. 2013;40(4):1752–9.

    Article  Google Scholar 

  61. Drancourt M, Houhamdi L, Raoult D. Yersinia pestis as a telluric, human ectoparasite-borne organism. Lancet Infect Dis. 2006;6(4):234–41.

    Article  PubMed  Google Scholar 

  62. Houhamdi L, Raoult D. Different genes govern Yersinia pestis pathogenicity in Caenorhabditis elegans and human lice. Microb Pathog. 2008;44(5):435–7.

    Article  CAS  PubMed  Google Scholar 

  63. Houhamdi L, Lepidi H, Drancourt M, Raoult D. Experimental model to evaluate the human body louse as a vector of plague. J Infect Dis. 2006;194(11):1589–96.

    Article  PubMed  Google Scholar 

  64. Davis DE. The scarcity of rats and the Black Death: an ecological history. J Interdiscip Hist. 1986;16(3):455–70.

    Article  Google Scholar 

  65. Christakos G, Olea RA, Yu HL. Recent results on the spatiotemporal modelling and comparative analysis of Black Death and bubonic plague epidemics. Public Health. 2007;121(9):700–20.

    Article  CAS  PubMed  Google Scholar 

  66. Harbeck M, Seifert L, Hänsch S, Wagner DM, Birdsell D, Parise KL, Wiechmann I, Grupe G, Thomas A, Keim P, Zöller L, Bramanti B, Riehm JM, Scholz HC. Yersinia pestis DNA from skeletal remains from the 6th century AD reveals insights into Justinianic Plague. PLoS Pathog. 2013;9(5):e1003349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haensch S, Bianucci R, Signoli M, Rajerison M, Schultz M, Kacki S, Vermunt M, Weston DA, Hurst D, Achtman M, Carniel E, Bramanti B. Distinct clones of Yersinia pestis caused the Black Death. PLoS Pathog. 2010;6(10):e1001134.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, McPhee JB, DeWitte SN, Meyer M, Schmedes S, Wood J, Earn DJ, Herring DA, Bauer P, Poinar HN, Krause J. A draft genome of Yersinia pestis from victims of the Black Death. Nature. 2011;478(7370):506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, Enk J, Birdsell DN, Kuch M, Lumibao C, Poinar D, Pearson T, Fourment M, Golding B, Riehm JM, Earn DJ, Dewitte S, Rouillard JM, Grupe G, Wiechmann I, Bliska JB, Keim PS, Scholz HC, Holmes EC, Poinar H. Yersinia pestis and the plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis. 2014;14(4):319–26.

    Article  PubMed  Google Scholar 

  70. Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler AJ, Wagner DM, Allender CJ, Easterday WR, Chenal-Francisque V, Worsham P, Thomson NR, Parkhill J, Lindler LE, Carniel E, Keim P. Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A. 2004;101(51):17837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM, Feldkamp M, Kusecek B, Vogler AJ, Li Y, Cui Y, Thomson NR, Jombart T, Leblois R, Lichtner P, Rahalison L, Petersen JM, Balloux F, Keim P, Wirth T, Ravel J, Yang R, Carniel E, Achtman M. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet. 2010;42(12):1140–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cui Y, Yu C, Yan Y, Li D, Li Y, Jombart T, Weinert LA, Wang Z, Guo Z, Xu L, Zhang Y, Zheng H, Qin N, Xiao X, Wu M, Wang X, Zhou D, Qi Z, Du Z, Wu H, Yang X, Cao H, Wang H, Wang J, Yao S, Rakin A, Li Y, Falush D, Balloux F, Achtman M, Song Y, Wang J, Yang R. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci U S A. 2013;110(2):577–82.

    Article  CAS  PubMed  Google Scholar 

  73. Ben-Ari T, Neerinckx S, Gage KL, Kreppel K, Laudisoit A, Leirs H, Stenseth NC. Plague and climate: scales matter. PLoS Pathog. 2011;7(9):e1002160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Davis S, Trapman P, Leirs H, Begon M, Heesterbeek JAP. The abundance threshold for plague as a critical percolation phenomenon. Nature. 2008;454(7204):634–7.

    Article  CAS  PubMed  Google Scholar 

  75. Xu L, Stige LC, Kausrud KL, Ben AT, Wang S, Fang X, Schmid BV, Liu Q, Stenseth NC, Zhang Z. Wet climate and transportation routes accelerate spread of human plague. Proc R Soc B Biol Sci. 2014;281(1780):20133159.

    Article  Google Scholar 

  76. Xu L, Liu Q, Stige LC, Ben Ari T, Fang X, Chan KS, Wang S, Stenseth NC, Zhang Z. Nonlinear effect of climate on plague during the third pandemic in China. Proc Natl Acad Sci U S A. 2011;108(25):10214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ben-Ari T, Neerinckx S, Agier L, Cazelles B, Xu L, Zhang Z, Fang X, Wang S, Liu Q, Stenseth NC. Identification of Chinese plague foci from long-term epidemiological data. Proc Natl Acad Sci U S A. 2012;109(21):8196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang Z, Li Z, Tao Y, Chen M, Wen X, Xu L, Tian H, Stenseth NC. Relationship between increase rate of human plague in China and global climate index as revealed by cross-spectral and cross-wavelet analyses. Integr Zool. 2007;2(3):144–53.

    Article  PubMed  Google Scholar 

  79. Schmid BV, Büntgen U, Easterday WR, Ginzler C, Walløe L, Bramanti B, Stenseth NC. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe. Proc Natl Acad Sci U S A. 2015;112(10):3020–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu L, Schmid BV, Liu J, Si X, Stenseth NC, Zhang Z. The trophic responses of two different rodent-vector-plague systems to climate change. Proc Biol Sci. 2015;282(1800):20141846.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vogler AJ, Chan F, Nottingha R, Andersen G, Drees K, Beckstrom-Sternberg SM, Wagner DM, Chanteau S, Keim P. A decade of plague in Mahajanga, Madagascar: insights into the global maritime spread of pandemic plague. mBio. 2013;4(1):e00623–12.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wheelis M. Biological warfare at the 1346 Siege of Caffa. Emerg Infect Dis. 2002;8(9):971–5.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Coleman MP. A plague epidemic in voluntary quarantine. Int J Epidemiol. 1986;15(3):379–85.

    Article  CAS  PubMed  Google Scholar 

  84. Seifert L, Wiechmann I, Harbeck M, Thomas A, Grupe G, Projahn M, Scholz HC, Riehm JM. Genotyping Yersinia pestis in historical plague: evidence for long-term persistence of Y. pestis in Europe from the 14th to the 17th century. PLoS One. 2016;11(1):e0145194.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bos KI, Herbig A, Sahl J, Waglechner N, Fourment M, Forrest SA, Klunk J, Schuenemann VJ, Poinar D, Kuch M, Golding GB, Dutour O, Keim P, Wagner DM, Holmes EC, Krause J, Poinar HN. Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. eLife. 2016. doi:10.7554/eLife.12994.

  86. Devaux CA. Small oversights that led to the Great Plague of Marseille (1720–1723): lessons from the past. Infect Genet Evol. 2013;14:169–85.

    Article  PubMed  Google Scholar 

  87. Haesser H. Lehrbuch der Geschichte der Medizin und der epidemischen Krankheiten. Jena: Hermann Duft Verlag; 1875 (Dritte Bearbeitung, Band 1, 2 und 3).

    Google Scholar 

  88. Ilmoni I. Bidrag til Nordens sjukdoms-historia [Contributions to the history of diseases in the Nordic countries]. Helsingfors [Helsinki]: J Simelii Arfvingar;1846, 1849, 1853 (1, 2 ock 3).

    Google Scholar 

  89. Walløe L. Plague and population: Norway 1350–1750. Avhandlinger (Norske videnskapsakademi), new series, No. 17. Oslo: University of Oslo, Department of Physiology; 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Bramanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bramanti, B., Stenseth, N.C., Walløe, L., Lei, X. (2016). Plague: A Disease Which Changed the Path of Human Civilization. In: Yang, R., Anisimov, A. (eds) Yersinia pestis: Retrospective and Perspective. Advances in Experimental Medicine and Biology, vol 918. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0890-4_1

Download citation

Publish with us

Policies and ethics