Skip to main content
Log in

Changes in earth’s dipole

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The dipole moment of Earth’s magnetic field has decreased by nearly \(9\% \) over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core–mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core–mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amit H, Olson P (2004) Helical core flow from geomagnetic secular variation. Phys Earth Planet Inter 147:1–25

    Article  Google Scholar 

  • Amit H, Olson P (2006) Time-average and time-dependent parts of core flow. Phys Earth Planet Inter 155:120–139

    Article  Google Scholar 

  • Backus G, Parker R, Constable C (1996) Foundations of geomagnetism. Cambridge University Press, Cambridge

    Google Scholar 

  • Badhwar GD (1997) Drift rate of the South Atlantic anomaly. J Geophys Res 102:2343–2349

    Article  PubMed  CAS  Google Scholar 

  • BEIR VII Phase 2 (2005) Health risks from exposure to low levels of ionizing radiation. The National Academy Press, Washington DC

    Google Scholar 

  • Benton ER, Voorhies CV (1987) Testing recent geomagnetic field models via magnetic flux conservation at the core–mantle boundary. Phys Earth Planet Inter 48:350–357

    Article  Google Scholar 

  • Biggin AJ, Thomas DN (2003) Analysis of long-term variations in the geomagnetic poloidal field intensity and evaluation of their relationship with global geodynamics. Geophys J Int 152:392–415

    Article  Google Scholar 

  • Birk GT, Lesch H, Konz C (2004) Solar wind induced magnetic field around the unmagnetized Earth. Astron Astrophys 420:L15–L18

    Article  Google Scholar 

  • Bloxham J (1986) The expulsion of magnetic flux from the Earth’s core. Geophys J R Astron Soc 87:669–678

    Google Scholar 

  • Bloxham J (1989) Simple models of fluid flow at the core surface derived from geomagnetic field models. Geophys J Int 99:173–182

    Google Scholar 

  • Bloxham J (1992) The steady part of the secular variation of the Earth’s magnetic field. J Geophys Res 97:19565–19579

    Google Scholar 

  • Bloxham J, Jackson A (1991) Fluid flow near the surface of Earth’s outer core. Rev Geophys 21:97–120

    Google Scholar 

  • Bloxham J, Jackson A (1992) Time-dependent mapping of the magnetic field at the core–mantle boundary. J Geophys Res 97:19565–19579

    Google Scholar 

  • Bloxham J, Gubbins D, Jackson A (1989) Geomagnetic secular variation. Philos Trans R Soc London A 329:415–502

    Google Scholar 

  • Bogue SW, Paul HA (1993) Distinctive field behavior following geomagnetic reversals. Geophys Res Lett 20:2399–2402

    Google Scholar 

  • Bottollier-Depois JF, Chau Q, Bouisset P, Kerlau G, Plawinski L, Lebaron-Jacobs L (2000) Assessing exposure to cosmic radiation during long-haul flights. Radiat Res 153(5 Pt 1):526–532

    Article  PubMed  CAS  Google Scholar 

  • Brasseur G, Solomon S (1984) Aeronomy of the middle atmosphere. Reidel, Boston

    Google Scholar 

  • Buffett BA (1992) Constraints on magnetic energy and mantle conductivity from the forced nutation of the Earth. J Geophys Res 97:18581–19597

    Google Scholar 

  • Buffett BA (2000) Earth’s core and the geodynamo. Science 288:2007–2012

    Article  PubMed  CAS  Google Scholar 

  • Buhler P, Desorgher L, Zehnder A, Daly E, Adams L (1996) Observations of the low Earth orbit radiation environment from Mir. Radiat Meas 26:917–921

    Article  PubMed  CAS  Google Scholar 

  • Bullard EC, Freedman C, Gellman H, Nixon J (1950) The westward drift of the Earth’s magnetic field. Philos Trans R Soc Lond A 243:67–92

    Google Scholar 

  • Busse FH (2000) Homogeneous dynamos in planetary cores and in the laboratory. Annu Rev Fluid Mech 32:383–408

    Article  Google Scholar 

  • Busse FH, Grote E, Simitev R (2003) Convection in rotating spherical shells and its dynamo action. In: Jones CA, Soward AM, Zhang K (eds) Earth’s core and lower mantle. Taylor and Francis, London

    Google Scholar 

  • Cain JC, Wang Z, Schmitx DR, Meyer J (1989) The geomagnetic spectrum for 1980 and core-crustal separation. Geophys J Int 97:443–447

    Google Scholar 

  • Carlowicz MJ, Lopez RE (2002) Storms from the sun. Joseph Henry Press, Washington DC

    Google Scholar 

  • Carlut J, Courtillot V (1998) How complex is the time-averaged geomagnetic field over the past 5 myr? Geophys J Int 134:527–544

    Article  Google Scholar 

  • Carlut J, Courtillot V, Hulot G (2000) Over how much time should the geomagnetic field be averaged to obtain the mean paleomagnetic field? Terra Nova 11:39–243

    Google Scholar 

  • Chapman S, Bartels J (1962) Geomagnetism, vols. I and II. Oxford University Press, Oxford UK

    Google Scholar 

  • Christensen U, Tilgner A (2004) Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 439:169–171

    Article  CAS  Google Scholar 

  • Christensen U, Olson P, Glatzmaier GA (1999) Numerical modeling of the geodynamo: a systematic parameter study. Geophys J Int 138:393–409

    Article  Google Scholar 

  • Clement BM (2004) Dependence of the duration of geomagnetic polarity reversals on site latitude. Nature 428:637–640

    Article  PubMed  CAS  Google Scholar 

  • Constable CG (2003) Geomagnetic reversals. In: Jones CA, Soward AM, Zhang K (eds) Earth’s core and lower mantle. Taylor and Francis, London

    Google Scholar 

  • Constable CG, Johnson CL (2005) A paleomagnetic power spectrum. Phys Earth Planet Inter 153:61–73

    Article  Google Scholar 

  • Constable CG, Korte M (2005) Is Earth’s magnetic field reversing? Earth Planet Sci Lett 236:348

    Article  CAS  Google Scholar 

  • Constable CG, Parker RL (1988) Statistics of geomagnetic secular variation for the past 5 m.y. J Geophys Res 93:11569–11581

    Google Scholar 

  • Constable CG, Johnson CL, Lund SP (2000) Global geomagnetic field models for the past 3000 years: transient or permanent flux lobes? Philos Trans R Soc London A 358:991–1008

    Google Scholar 

  • Courtillot V, Besse J (1987) Magnetic field reversals, polar wander, and core–mantle coupling. Science 237:1140–1147

    Article  PubMed  CAS  Google Scholar 

  • Cox A (1975) Reversed flux as reversal mechanism. Rev Geophys Space Phys 13:35–51

    Google Scholar 

  • Davidson PA (2001) Introduction to magnetohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • DeSantis A, Barraclough DR, Tozzi R (2003) Spatial and temporal spectra of the geomagnetic field and their scaling properties. Phys Earth Planet Inter 135:125–134

    Article  Google Scholar 

  • De Wijs GA (1998) The viscosity of liquid iron at the physical conditions of the Earth’s core. Nature 392:805–807

    Article  Google Scholar 

  • Deme S, Reitz G, Apthy I, Hjja I, Lng E, Fehr I (1999) Doses due to the South Atlantic anomoly during the Euromir’95 mission measured by an on-board TLD system. Radiat Prot Dosim 85:301–304

    CAS  Google Scholar 

  • Dobson DP, Crichton WA, Vocadlo L, Jones AP, Wang Y, Uchida T, Rivers M, Sutton S, Brodholt JP (2000) In situ measurement of viscosity of liquids in the Fe–FeS system at high pressures and temperatures. Am Mineral 85:1838–1842

    CAS  Google Scholar 

  • Dormy E, Valet JP, Courtillot V (2000) Numerical models of the geodynamo and observational constraints. Geochem Geophys Geosyst 1(10). DOI 10.1029/2000GC000062

  • Durante M (2002) Biological effects of cosmic radiation in low-Earth orbit. Int J Mod Phys A 17:1713–1721

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Eymin C, Hulot G (2005) On surface core flows inferred from satellite magnetic data. Phys Earth Planet Inter 152:200–220

    Article  Google Scholar 

  • Fraser-Smith AC (1987) Centered and eccentric geomagnetic dipoles and their poles 1600–1985. Rev Geophys 25:1–16

    Google Scholar 

  • Gauss CF (1877) Allgemeine Theorie des Erdmagnetismus. Werke 5:121–193 (original publication in 1839, Weidmann, Leipzeg; translated into English by Sabine E and edited by Taylor R in Scientific Memoirs, vol. 2 in 1841, Taylor and Taylor, London)

    Google Scholar 

  • Gee J, Conde SC, Hildebrand JA, Donnelly JA, Parker RL (2000) Geomagnetic intensity variations over the past 780 kyr obtained from near-seafloor anomalies. Nature 408:827–832

    Article  PubMed  CAS  Google Scholar 

  • Gire C, LeMouël J-L (1990) Tangentially geostrophic flow at the core–mantle boundary compatible with the observed geomagnetic secular variation: the large-scale component of the flow. Phys Earth Planet Inter 59:259–287

    Article  Google Scholar 

  • Gire C, LeMouël J-L, Madden T (1986) Motions of the core surface derived by SV data. Geophys J R Astron Soc 84:1–29

    Google Scholar 

  • Glatzmaier GA (2002) Geodynamo simulations—how realistic are they? Annu Rev Earth Planet Sci 30:237–257

    Article  CAS  Google Scholar 

  • Glatzmaier GA, Olson P (2005) Probing the geodynamo. Sci Am 292:50–57

    Article  Google Scholar 

  • Glatzmaier GA, Roberts PH (1995) A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys Earth Planet Inter 91:63–75

    Article  Google Scholar 

  • Glatzmaier GA, Coe RS, Hongre L, Roberts PH (1999) The role of the mantle in controlling the frequency of geomagnetic reversals. Nature 401:885–890

    Article  Google Scholar 

  • Glassmeier KH, Vogt A, Stadelmann Z, Buchert S (2004) Concerning long-term geomagnetic variations and space climatology. Ann Geophys 22:3669–3677

    Article  Google Scholar 

  • Golightly MJ, Hardy K, Quam W (1994) Radiation dosimetry during US space shuttle missions with the RME-III. Radiat Meas 23:25–42

    Article  PubMed  CAS  Google Scholar 

  • Grote E, Busse FH, Tilgner A (2000) Convection-driven quadrupole dynamos in rotating spherical shells. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60:5025–5028

    Google Scholar 

  • Gubbins D (1982) Finding core motions from magnetic observations. Philos Trans R Soc Lond A 306:249–256

    Article  Google Scholar 

  • Gubbins D (1987) Mechanism for geomagnetic polarity reversals. Nature 326:167–169

    Article  Google Scholar 

  • Gubbins D (1999) The distinction between geomagnetic excursions and reversals. Geophys J Int 137:F1–F3

    Article  Google Scholar 

  • Gubbins D (2004) Time series analysis and inverse theory for geophysicists. Cambridge University Press, Cambridge

    Google Scholar 

  • Gubbins D, Jones AL, Finlay C (2006) Fall in Earth’s magnetic field is erratic. Science 321:900–903

    Article  CAS  Google Scholar 

  • Gundestrup M, Storm HH (1999) Radiation induced acute myeloid leukaemias and other cancers in commercial jet cockpit crew: a population based cohort study. Lancet 354:2029–2031 (Dec 11)

    Article  PubMed  CAS  Google Scholar 

  • Guyodo Y, Valet JP (1999) Global changes in geomagnetic intensity during the past 800 thousand years. Nature 399:249–252

    Article  CAS  Google Scholar 

  • Hale CJ (1987) Paleomagnetic data suggest a link between the Archaean–Proterozoic boundary and inner-core nucleation. Nature 329:233–237

    Article  Google Scholar 

  • Hale CJ, Dunlop DJ (1987) The intensity of the geomagnetic field at 3.5 Ga: paleointensity results from the Komati formation, Barberton Mountain Land, South Africa. Earth Planet Sci Lett 86:354–364

    Article  Google Scholar 

  • Hargreaves JK (1992) The solar-terrestrial environment: an introduction to geospace—the science of the terrestrial upper atmosphere, ionosphere, and magnetosphere. Cambridge University Press, New York

    Google Scholar 

  • Heirtzler JR (2002) The future of the South Atlantic anomaly and implications for radiation damage in space. J Atmos Solar Terr Phys 64:1701–1708

    Article  Google Scholar 

  • Heller R, Merrill RT, McFadden PL (2003) Two states of paleomagnetic intensities for the past 320 million years. Phys Earth Planet Inter 135:211–223

    Article  Google Scholar 

  • Holme R (1998) Electromagnetic core–mantle coupling-I. Explaining decadal changes in the length of day. Geophys J Int 132:167–180

    Article  Google Scholar 

  • Holme R, Olsen N (2006) Core-surface flow modelling from high resolution secular variation. Geophys J Int (in press). DOI 10.1111/j1365-246X.2006.03033.x

  • Holme R, Whaler KA (2001) Steady core flow in an azimuthally drifting reference frame. Geophys J Int 14:560–569

    Article  Google Scholar 

  • Hulot G, Eymin C, Langlais B, Mandea M, Olsen N (2002) Small-scale structure of the geodynamo inferred from Øersted and Magsat satellite data. Nature 416:620–623

    Article  PubMed  CAS  Google Scholar 

  • Jackson A (1997) Time-dependency of tangentially geostrophic core surface motions. Phys Earth Planet Inter 103:293–311

    Article  Google Scholar 

  • Jackson A (2003) Intense equatorial flux spots on the surface of the Earth’s core. Nature 424:760–763

    Article  PubMed  CAS  Google Scholar 

  • Jackson A, Bloxham J, Gubbins D (1993) Time-dependent flow at the core surface and conservation of angular momentum in the coupled core–mantle system. In: LeMouël J-L, Smylie DE, Herring T (eds) Dynamics of Earth’s deep interior and Earth rotation, Geophys Monogr 12(72):97–107

  • Jackson A, Jonkers ART, Walker MR (2000) Four centuries of geomagnetic secular variation from historical records. Philos Trans R Soc Lond A 358:957–990

    Article  CAS  Google Scholar 

  • Jacobs JA (1984) Reversals of the Earth’s magnetic field. Adam Hilger, Bristol, UK

    Google Scholar 

  • Jault D, Gire C, LeMouël J-L (1988) Westward drift, core motions and exchange of angular momentum between core and mantle. Nature 333:353–356

    Article  Google Scholar 

  • Johnson CL, Constable CG (1997) The time averaged geomagnetic field: global and regional biases for 0–5 Ma. Geophys J Int 131:643–666

    Google Scholar 

  • Johnson CL, Constable CG, Tauxe LT (2003) Mapping long-term changes in Earth’s magnetic field (perspective article). Science 300:2044–2045

    Article  PubMed  CAS  Google Scholar 

  • Jones CA (2000) Convection-driven geodynamo models. Philos Trans R Soc Lond A 358:873–897

    Article  Google Scholar 

  • Jonkers ART, Jackson A, Murray A (2003) Four centuries of geomagnetic data from historical records. Rev Geophys 41(2):11–36

    Article  Google Scholar 

  • Juarez MT, Tauxe L (2000) The intensity of the time-averaged geomagnetic field: the last 5 Myr. Earth Planet Sci Lett 175:169–180

    Article  CAS  Google Scholar 

  • Juarez MT, Tauxe L, Gee JS, Pick T (1998) The intensity of the Earth’s magnetic field over the last 160 million years. Nature 394:878–881

    Article  CAS  Google Scholar 

  • Kageyama A, Ochi M, Sato T (1999) Flip-flop transition of the magnetic intensity and polarity reversals in the magnetohydrodynamic dynamo. Phys Rev Lett 82:5409–5412

    Article  CAS  Google Scholar 

  • Kono M, Roberts PH (2002) Recent geodynamo simulations and observations of the geomagnetic field. Rev Geophys 40(4):1013

    Article  Google Scholar 

  • Kono M, Tanaka H (1995) Intensity of the geomagnetic field in geological time: a statistical study. In: Yukutake T (ed) The Earth’s central part: its structure and dynamics. Terrapub, Toyko, pp 75–94

    Google Scholar 

  • Konradi A, Badhwar GD, Braby LA (1994) Recent space shuttle observations of the South Atlantic anomaly and radiation belt models. Adv Space Res 14:911–921

    Article  PubMed  CAS  Google Scholar 

  • Korte M, Constable CG (2005) Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K. Geochem Geophys Geosyst 6(2). DOI 10.1029/2004GC000801

  • Kuang W, Bloxham J (1997) An earth-like numerical dynamo model. Nature 389:371–374

    Article  CAS  Google Scholar 

  • Kutzner C, Christensen U (2000) Effects of driving mechanisms in geodynamo models. Geophys Res Lett 27:29–32

    Article  Google Scholar 

  • Kutzner C, Christensen U (2002) From stable dipolar to reversing numerical dynamos. Phys Earth Planet Inter 131:29–45

    Article  Google Scholar 

  • Langel RA, Hinze WJ (1998) The magnetic field of the Earth’s lithosphere: the satellite perspective. Cambridge University Press, New York

    Google Scholar 

  • Langel RA, Estes RH, Mead GD, Fabiano EB, Lancaster ER (1980) Initial geomagnetic field model from Magsat vector data. Geophys Res Lett 7:793–796

    Google Scholar 

  • Larson RL, Olson P (1991) Mantle plumes control magnetic reversal frequency. Earth Planet Sci Lett 107:437–447

    Article  Google Scholar 

  • Lean J (2005) Living with a variable sun. Phys Today 58(6):32–38

    CAS  Google Scholar 

  • Leaton BR, Malin SRC (1967) Recent changes in the magnetic dipole moment of the earth. Nature 213:1110

    Article  Google Scholar 

  • Lin JL, Verosub KL, Roberts PA (1994) Decay of the virtual dipole moment during polarity transitions and geomagnetic excursions. Geophys Res Lett 21:525–528

    Article  Google Scholar 

  • Livermore RA, Vine FJ, Smith AG (1984) Plate motions and the geomagnetic field II. Jurassic to tertiary. Geophys J R Astron Soc 79:939–961

    Google Scholar 

  • Loper D, McCartney K (1986) Mantle plumes and the periodicity of magnetic field reversals. Geophys Res Lett 13:1525–1528

    Google Scholar 

  • Malin SRC (1982) Sesquicentenary of Gauss’s first measurement of the absolute value of magnetic intensity. Philos Trans R Soc Lond A 306:5–8

    Google Scholar 

  • Maus S, Rother M, Holme R, Luhr H, Olsen N, Haak V (2002) First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field. Geophys Res Lett 29:1702–1705

    Article  Google Scholar 

  • Maus S, Luhr H, Balasis G, Rother M, Mandea M (2004) Introducing POMME, the Potsdam magnetic model of the Earth in CHAMP. In: Reigber C, Lühr H, Schwintzer und P, Wickert J (eds) Earth observation with CHAMP, results from three years in orbit. Springer, Berlin Heidelberg New York, pp 293–298

    Google Scholar 

  • Maus S, Rother M, Hemant K, Luhr H, Kuvshinov A, Olsen N (2005) Earth’s crustal magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements. Geophys J Int (in press). DOI 10.1111/j.1365-246X.2006.02833x

  • McCormack PD, Swenberg CE, Bücker H (eds) (1988) Terrestrial space radiation and its biological effects. NATO ASI series, series A: life sciences, vol 154. Plenum, New York

    Google Scholar 

  • McDonald KL, Gunst RH (1968) Recent trends in the Earth’s magnetic field. J Geophys Res 73:2057–2067

    Article  Google Scholar 

  • McElhinny MW, Senanayake WE (1982) Variations in the geomagnetic dipole 1. The past 50,000 years. J Geomagn Geoelectr 34:39–51

    Google Scholar 

  • McFadden PL, Merrill RT (1997) Sawtooth paleointensity and reversals of the geomagnetic field. Phys Earth Planet Inter 103:247–252

    Article  Google Scholar 

  • Merrill RT, McFadden PL (1999) Geomagnetic polarity transitions. Rev Geophys 37:201–226

    Article  Google Scholar 

  • Merrill RT, McElhinny MW, McFadden PL (1998) The magnetic field of the Earth. Academic, San Diego

    Google Scholar 

  • Moffatt HK (1978) Magnetic field generation in electrically conducting fluids. Cambridge University Press, Cambridge

    Google Scholar 

  • Mouritsen H, Feenders G, Liedvogel M, Kropp W (2004) Migratory birds use head scans to detect the direction of the earth’s magnetic field. Curr Biol 14:1946–1949

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in \(MgSiO_{3} \). Science 304:855–857

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Hamano Y (1992) Geomagnetic poles over the past 10,000 years. Geophys Res Lett 19:1715–1718

    Google Scholar 

  • Olsen N, Holme R, Hulot G, Sabaka T, Neubert T, Toeffner-Clausen L, Primdahl F, Joergensen J, Leger J-M, Barraclough D, Bloxham J, Cain J, Constable C, Golovkov V, Jackson A, Kotze P, Langlais B, Macmillan S, Mandea M, Merayo J, Newitt L, Purucker M, Risbo T, Stampe M, Thomson A, Voorhies C (2000) Oersted initial field model. Geophys Res Lett 27:3607–3610

    Article  Google Scholar 

  • Olson P (2002) The disappearing dipole. Nature 416:590–591

    Article  Google Scholar 

  • Olson P (2003) Thermal interaction of the core and mantle. In: Jones CA, Soward AM, Zhang K (eds) Earth’s core and lower mantle. Taylor and Francis, London

    Google Scholar 

  • Olson P, Christensen U, Glatzmaier GA (1999) Numerical modeling of the geodynamo: mechanisms of field generation and equilibration. J Geophys Res 104:10383–10404

    Article  Google Scholar 

  • Olson P, Sumita I, Aurnou J (2002) Diffusive magnetic images of upwelling patterns in the core. J Geophys Res 107(12). DOI 10.1029/2001jb000384

  • Pais A, Hulot G (2000) Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows. Phys Earth Planet Inter 118:291–316

    Article  Google Scholar 

  • Pan Y, Hill MJ, Zhu R, Shaw J (2004) Further evidence for low intensity of the geomagnetic field during the early Cretaceous time: using the modified Shaw method and microwave technique. Geophys J Int 157:553–564

    Article  Google Scholar 

  • Phillips JB (1996) Magnetic navigation. J Theor Biol 180:309–319

    Article  Google Scholar 

  • Pinto OJ, Gonzalez WD, Pinto IRC, Gonzalez ALC, Mendes OJ (1992) The South Atlantic magnetic anomaly: three decades of research. J Atmos Terr Phys 54:1129–1134

    Article  Google Scholar 

  • Poirier JP (1994) Physical properties of the Earth’s core. CR Acad Sci Paris 318:341–350

    CAS  Google Scholar 

  • Poirier JP (2000) Introduction to the physics of the Earth’s interior. Cambridge University Press, Cambridge

    Google Scholar 

  • Raup DM (1985) Magnetic reversals and mass extinctions. Nature 314:341–343

    Article  PubMed  CAS  Google Scholar 

  • Roberts PH, Glatzmaier GA (2000) Geodynamo theory and simulations. Rev Mod Phys 72:1081–1123

    Article  Google Scholar 

  • Roberts PH, Scott S (1965) On analysis of the secular variation. J Geomagn Geoelectr 17:137–151

    Google Scholar 

  • Sabaka TJ, Olsen N, Langel RA (2002) A comprehensive model of the quiet time, near-earth magnetic field: phase 3. Geophys J Int 151:32–68

    Article  Google Scholar 

  • Sabaka TJ, Olsen N, Purucker M (2004) Extending comprehensive models of the Earth’s magnetic field with Oersted and CHAMP. Geophys J Int 159(2):521–547

    Article  Google Scholar 

  • Sarson GR, Jones CA (1999) A convection driven geodynamo reversal model. Phys Earth Planet Inter 111:3–20

    Article  Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and planets. Cambridge University Press, Cambridge

    Google Scholar 

  • Secco RA, Schloessin HH (1989) The electrical resistivity of solid and liquid Fe at pressures up to 7 GPa. J Geophys Res 94:5887–5894

    Google Scholar 

  • Selkin PA, Tauxe L (2000) Long-term variations in palaeointensity. Philos Trans R Soc Lond A 358:1065–1088

    Article  Google Scholar 

  • Simitev R, Busse FH (2005) Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells. J Fluid Mech 532:365–388

    Article  Google Scholar 

  • Sisco GL, Chen CK (1975) The paleomagnetosphere. J Geophys Res 80:4675–4680

    Google Scholar 

  • Stacey FD (1992) Physics of the Earth, 3rd edn. Brookfield Press, Brisbane, AU

    Google Scholar 

  • Stevenson DJ (1987) Limits on lateral density and velocity variations in the Earth’s outer core. Geophys J R Astron Soc 88:311–319

    Google Scholar 

  • Stevenson DJ (1990) Fluid dynamics of core formation. In: Newsom HE, Jones JH (eds) Origin of the Earth. Oxford University Press, London, UK, pp 231–249

    Google Scholar 

  • Takahashi F, Matsushima M, Honkura Y (2005) Simulations of a quasi-Taylor state geomagnetic field including polarity reversals on the Earth simulator. Science 309:459–461

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Kono M, Uchimura H (1995) Some global features of paleointensity in geologic time. Geophys J Int 120:97–102

    Google Scholar 

  • Tarduno JA, Cotrell RD, Smirnov AV (2001) High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals. Science 291:1779–1783

    Article  Google Scholar 

  • Thouveny N, Creer KM, Williamson D (1993) Geomagnetic moment variations in the last 70,000 years, impact on production of cosmogenic isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 7:157–172

    Google Scholar 

  • Valet JP (2003) Time variations in geomagnetic intensity. Rev Geophys 41(1):1004. DOI 10.1029/2001RG000104

    Google Scholar 

  • Valet J-P, Meynadier L, Guyodo Y (2005) Geomagnetic dipole strength and reversal rate over the past two million years. Nature 435:802–805

    Article  PubMed  CAS  Google Scholar 

  • Verosub KL, Cox A (1971) Changes in the total geomagnetic energy external to Earth’s core. J Geomagn Geoelectr 23:235–242

    Google Scholar 

  • Voorhies CV (1986) Steady flows at the top of Earth’s core derived from geomagnetic field models. J Geophys Res 91:12444–12466

    Google Scholar 

  • Walker MM, Dennis TE, Kirschvink JL (2002) The magnetic sense and its use in long-distance navigation by animals. Curr Opin Neurobiol 12:735–744

    Article  PubMed  CAS  Google Scholar 

  • Whaler KA, Davis RG (1997) Probing the Earth’s core with geomagnetism. In: Crossley DJ (ed) Earth’s deep interior. Gordon and Breach, Amsterdam, pp 114–166

    Google Scholar 

  • Wicht J, Olson P (2004) A detailed study of the polarity reversal mechanism in a numerical dynamo model. Geochem Geophys Geosyst 5(3). DOI 10.1029/2003GC000602

  • Wood BJ, Halliday AN (2005) Cooling of the Earth and core formation after the giant impact. Nature 437:1345–1348

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Tsunakawa H (2005) Geomagnetic field intensity during the last 5 Myr: LTD-DHT Shaw palaeointensities from volcanic rocks of the Society Islands, French Polynesia. Geophys J Int 162:79–114

    Article  Google Scholar 

  • Yang S, Odah H, Shaw J (2000) Variations in the geomagnetic dipole moment over the last 12,000 years. Geophys J Int 140:158–162

    Article  Google Scholar 

  • Yokoyama Y, Yamazaki T (2000) Geomagnetic paleointensity variation with a 100 kyr quasi-period. Earth Planet Sci Lett 181:7–14

    Article  CAS  Google Scholar 

  • Yoshihara A, Hamano Y (2000) Intensity of the Earth’s magnetic field in late Archean obtained from diabase dikes of the Slave Province, Canada. Phys Earth Planet Inter 117:295–307

    Article  Google Scholar 

  • Yukutake T (1967) The westward drift of the Earth’s magnetic field in historic times. J Geomagn Geoelectr 19:103–116

    Google Scholar 

  • Zhang K, Busse FH (1989) Convection driven magnetohydrodynamic dynamos in rotating spherical shells. Geophys Astrophys Fluid Dyn 49:97–116

    Google Scholar 

  • Zhu RX, Pan YX, Shaw J, Li DM, Li Q (2001) Paleointensity just prior to the Cretaceous normal superchron. Phys Earth Planet Inter 128:207–222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, P., Amit, H. Changes in earth’s dipole. Naturwissenschaften 93, 519–542 (2006). https://doi.org/10.1007/s00114-006-0138-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0138-6

Keywords

Navigation