Skip to main content
Log in

What makes a planet habitable?

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

This work reviews factors which are important for the evolution of habitable Earth-like planets such as the effects of the host star dependent radiation and particle fluxes on the evolution of atmospheres and initial water inventories. We discuss the geodynamical and geophysical environments which are necessary for planets where plate tectonics remain active over geological time scales and for planets which evolve to one-plate planets. The discoveries of methane–ethane surface lakes on Saturn’s large moon Titan, subsurface water oceans or reservoirs inside the moons of Solar System gas giants such as Europa, Ganymede, Titan and Enceladus and more than 335 exoplanets, indicate that the classical definition of the habitable zone concept neglects more exotic habitats and may fail to be adequate for stars which are different from our Sun. A classification of four habitat types is proposed. Class I habitats represent bodies on which stellar and geophysical conditions allow Earth-analog planets to evolve so that complex multi-cellular life forms may originate. Class II habitats includes bodies on which life may evolve but due to stellar and geophysical conditions that are different from the class I habitats, the planets rather evolve toward Venus- or Mars-type worlds where complex life-forms may not develop. Class III habitats are planetary bodies where subsurface water oceans exist which interact directly with a silicate-rich core, while class IV habitats have liquid water layers between two ice layers, or liquids above ice. Furthermore, we discuss from the present viewpoint how life may have originated on early Earth, the possibilities that life may evolve on such Earth-like bodies and how future space missions may discover manifestations of extraterrestrial life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Anderson KA, Carlson CW, McFadden J, Curtis DW, Mitchell D, Reme H, Mazelle C, Sauvaud JA, d’Uston C, Cros A, Medale JL, Bauer SJ, Cloutier P, Mayhew M, Winterhalter D, Ness NF (1998) Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor mission. Science 279: 1676

    ADS  Google Scholar 

  • Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Mitchell D, Anderson KA, Carlson CW, McFadden J, Reme H, Mazelle C, Vignes D, Bauer SJ, Cloutier P, Ness NF (2001) Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J Geophys Res 106: 23403. doi:10.1029/2000JE001404

    ADS  Google Scholar 

  • Aguilar DA (2008) Earth: a borderline planet for life? Harvard-Smithsonian Center for Astrophysics, CfA Press Release No. 2008-02 For Release: Wednesday, January 09, 2008 11:00:00 AM EST

  • Alfvén H, Fälthammar CG (1963) Cosmical electrodynamics, fundamental principles. Clarendon, Oxford

    MATH  Google Scholar 

  • Allamandola LJ, Hudgins DM, Sandford SA (1999) Carbon chain abundance in the diffuse interstellar medium. ApJ 511: 115

    ADS  Google Scholar 

  • Ambruster CW, Pettersen BR, Hawley S, Coleman LA, Sandman WH (1986) An episode of mass expulsions from the M-dwarf flare star EV Lacertae? In: Rolfe EJ (ed) New insights in astrophysics. Eight Years of UV Astronomy with IUE, European Space Agency, Paris, ESA SP-263, pp 137–140

  • Ansan V v, Vergely P, Masson Ph (1996) Model of formation of Ishtar Terra, Venus. Planet Space Sci 44: 817

    ADS  Google Scholar 

  • Arndt NT (2004) Crustal growth rates. In: Eriksson PG et al (eds) The precambrian Earth: tempos and events. Dev Precambrian Geol 12:155

  • Audard M, Güdel M, Drake JJ, Kashyap VL (2000) Extreme-ultraviolet flare activity in late-type stars. Astrophys J 541: 396

    ADS  Google Scholar 

  • Ayres TR (1997) Evolution of the solar ionizing flux. J Geophys Res 102: 1641

    ADS  Google Scholar 

  • Bada JL, Lazcano A (2003) Prebiotic soup—revisiting the Miller experiment. Science 300: 745

    Google Scholar 

  • Beaugé S, Ferraz-Mello S, Michtchenko TA (2008) Planetary masses and orbital parameters from radial velocity measurements. In: Dvorak D (eds) Extrasolar planets. Wiley-VCH, Weinheim, pp 1–26

    Google Scholar 

  • Becker L, Bunch TE (1997) Fullerenes, fulleranes and PAHs in the Allende meteorite. Meteoritics 32: 479

    Google Scholar 

  • Bibring J-P, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthé M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307: 1576

    ADS  Google Scholar 

  • Bond HE, Mullan DJ, O’Brien MS, Sion EM (2001) Detection of coronal mass ejections in V471 Tauri with the Hubble Space Telescope. ApJ 560: 919

    ADS  Google Scholar 

  • Boss AP (2004) From molecular clouds to circumstellar disks. In: Festou M et al (eds) Comets II. University of Arizona Press, Tucson, pp 67–80

    Google Scholar 

  • Brace LH, Theis RF, Hoegy WR (1982) Plasma clouds above the ionopause of Venus and their implications. Planet Space Sci 30: 29

    ADS  Google Scholar 

  • Brasier MD, Green OR, Lindsay JF, McLoughlin N, Steele A, Stoakes C (2005) Critical testing of Earth’s oldest putative fossil assemblage from the ~3.5 Ga Apex chert, Chinaman Creek, Western Australia, Precambrian Research, vol 140, p 55

  • Bredehöft JH, Meierhenrich UJ (2008) Amino acid structures from UV irradiation of simulated interstellar ices. In: Takenaka N (eds) Photochemistry in ice. Research Signpost, Kerala, India

    Google Scholar 

  • Breuer D, Spohn T (2003) Early plate tectonics versus single-plate tectonics on Mars: evidence from magnetic field history and crust evolution. J Geophys Rev 108: 5072. doi:10.1029/2002JE001999

    Google Scholar 

  • Breuer D, Zhou H, Yuen A, Spohn T (1996) Phase transitions in the martian mantle: implications for the planet’s volcanic history. J Geophys Res 101: 7531

    ADS  Google Scholar 

  • Breuer D, Yuen A, Spohn T (1997) Phase transitions in the Martian mantle: implications for partially layered convection. Earth Planet Sci Lett 148: 457

    ADS  Google Scholar 

  • Briggs R, Ertem G, Ferris JP, Greenberg JM, McCain PJ, Mendoza-Gomez CX, Schutte W (1992) Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium. Orig Life Evol Biosph 22: 287–307

    ADS  Google Scholar 

  • Brown RH, Soderblom LA, Soderblom JM, Clark RN, Jaumann R, Barnes JW, Sotin C, Buratti B, Baines KH, Nicholson PD (2008) The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454: 607

    ADS  Google Scholar 

  • Brownlee D, The stardust preliminary examination science team (2006) Comet 81P/Wild 2 under a microscope. Science 314:

  • Cabrol NA, Grin EA (2005) Ancient and recent lakes on Mars. In: Tetsuya Tokano (eds) Water on Mars and life. Springer, Heidelberg, p 235

    Google Scholar 

  • Cain JC, Beaumont P, Holter W, Wang Z, Nevanlinna H (1995) The magnetic bode fallacy. J Geophys Res 100: 9439

    ADS  Google Scholar 

  • Christensen UR, Aubert J (2006) Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys J Int 166: 97

    ADS  Google Scholar 

  • Cernicharo J, Crovisier J (2005) Water in space: the water world of ISO. Space Sci Rev 119: 29

    ADS  Google Scholar 

  • Chappell CR, Olsen RC, Green JL, Johnson JFE, Waite JH Jr (1982) The Discovery of nitrogen ions in the Earth’s magnetosphere. Geophys Res Lett 9: 937

    ADS  Google Scholar 

  • Chyba C, Sagan C (1992) Endogenous production, exogenous delivery, and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355: 125

    ADS  Google Scholar 

  • Cockell CS (1999) Life on Venus. Planet Space Sci 47: 1487

    ADS  Google Scholar 

  • Cockell CS, Herbst T, Léger A, Absil O, Beichmann C, Benz W, Brack A, Chazelas B, Chelli A, Cottin H, Coudédu Foresto V, Danchi W, Defrère D, den Herder J-W, Eiroa C, Fridlund M, Hennin T, Johnston K, Kaltenegger L, Labadie L, Lammer H, Launhardt R, Lawson P, Lay o P, Liseau R, Martin SR, Mawet D, Mourard D, Moutou C, Mugnier L, Paresce F, Quirrenbach A, Rabbia Y, Rottgering HJA, Rouan D, Santos N, Selsis F, Serabyn E, Westall F, White G, Ollivier M, Bordé P (2009) Darwin—an experimental astronomy mission to search for extrasolar planets. Exp Astron 23: 435. doi:10.1007/s10686-008-9121-x

    ADS  Google Scholar 

  • Connerney JEP, Acuña MH, Wasilewski PJ, Kletetschka G, Ness NF, Rème H, Lin RP, Mitchell DL (2001) The global magnetic field of Mars and implications for crustal evolution. Geophys Res Lett 28: 4015

    ADS  Google Scholar 

  • Connerney JEP, Acuña MH, Ness NF, Spohn T (2004) Mars crustal. Sci Rev 111: 1

    ADS  Google Scholar 

  • Coustenis A, Taylor F (2008) Titan: exploring an Earthlike World. Series on atmospheric, oceanic and planetary physics, vol 4. World Scientific, Singapore

    Google Scholar 

  • Coustenis A, Achterberg R, Conrath B, Jennings D, Marten A, Gautier D, Bjoraker G, Nixon C, Romani P, Carlson R, Flasar M, Samuelson R E, Teanby N, Irwin P, Bézard B, Orton G, Kunde V, Abbas M, Courtin R, Fouchet Th, Hubert A, Lellouch E, Mondellini J, Taylor F W, Vinatier S (2007) The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189: 35

    ADS  Google Scholar 

  • Coustenis A et al (2009) TandEM: Titan and Enceladus mission. Exp Astron 23: 893. doi:10.1007/s10686-008-9103-z

    ADS  Google Scholar 

  • Cully SL, Fisher GH, Abbott MJ, Siegmund OHW (1994) A coronal mass ejection model for the 1992 July flare on AU Microscopii observed by the Extreme Ultraviolet Explorer. ApJ 435: 449

    ADS  Google Scholar 

  • Cully CM, Donovan EF, Yau AW, Arkos GG (2003) Akebono/Suprathermal Mass Spectrometer observations of low energy ion outflow: dependence on magnetic activity and solar wind conditions. J Geophys Res 108: 1093. doi:10.1029/2001JA009200

    Google Scholar 

  • DesMarais DJ, Harwit MO, Jucks KW, Kasting JF, Lin DNC, Lunine JI, Schneider J, Seager S, Traub WA, Woolf NJ (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2: 153

    ADS  Google Scholar 

  • Dehant V, Lammer H, Kulikov Yu N, Grießmeier J-M, Breuer D, Verhoeven O, Karatekin Ö, Van Hoolst T, Korablev O, Lognonnè E (2007) Planetary magnetic dynamo effext on atmospheric protection of early Earth and Mars. Space Sci Rev 129: 279

    ADS  Google Scholar 

  • Ehrenfreund P, Charnley SB (2000) Organic molecules in the interstellar medium, comets, and meteorites: A voyage from dark clouds to the early Earth. Annu Rev Astron Astrophys 38: 427

    ADS  Google Scholar 

  • Ehrenfreund P, Spaans M (2007) Cosmic carbon chemistry American Chemical Society. In: ACS Symposium: Chemical Evolution I: Chemical Change Across Space and Time. 233rd ACS, Chicago. Oxford University Press, Oxford, pp 232–246

  • Ehrenfreund P, Irvine W, Becker L, Blank J, Brucato J, Colangeli L, Derenne S, Despoi D, Dutrey A, Fraaije H, Lazcano A, Owen T, Robert F (2002) Astrophysical and astrochemical insights into the origin of life. Rep Prog Phys 65: 1427

    ADS  Google Scholar 

  • Ehrenfreund P, Cox N, Foing BH (2006) Natural fullerenes and related structures of elemental carbon. Ser Dev Fuller Sci 6: 57

    Google Scholar 

  • Eriksson PG, Catuneanu O (2004) A commentary on Precambrian plate tectonics. In: Eriksson PG, Altermann W, Nelson DR et al (eds) The precambrian Earth: tempos and events. Dev Precambrian Geol 12:201

  • Evans JV (1977) Satellite beacon contributions to studies of the structure of the ionosphere. Rev Geophys 15: 325

    ADS  Google Scholar 

  • Foing BH, Ehrenfreund P (1994) Detection of two interstellar absorption bands coincident with spectral features of C +60 . Nature 369: 296

    ADS  Google Scholar 

  • Fortes AD (2000) Exobiological implications of a possible ammonia-water ocean inside Titan. Icarus 146: 444

    ADS  Google Scholar 

  • Franck S, Block A, von Bloh W, Bounama C, Schellnhuber H-J, Svirezhev Y (2000) Habitable zone for Earth-like planets in the Solar System. Planet Space Sci 48: 1099

    ADS  Google Scholar 

  • Fridlund M, Kaltenegger L (2008) Mission requirements: how to search for extrasolar planets. In: Dvorak D (eds) Extrasolar planets. Wiley-VCH, Weinheim, pp 51–78

    Google Scholar 

  • Futaana Y, Barabash S., Yamauchi M, McKenna-Lawlor S, Lundin R, Luhmann JG, Brain D, Carlsson E, Sauvaud J-A, Winningham JD, Frahm RA, Wurz P, Holmström M, Gunell H, Kallio E, Baumjohann W, Lammer H, Sharber JR, Hsieh KC, Andersson H, Grigoriev A, Brinkfeldt K, Nilsson H, Asamura K, Zhang TL, Coates AJ, Linder DR, Kataria DO, Curtis CC, Sandel BR, Fedorov A, Mazelle C, Thocaven J-J, Grande M, Koskinen HEJ, Sales T, Schmidt W, Riihela P, Kozyra J, Krupp N, Woch J, Fränz M, Dubinin E, Orsini S, Cerulli-Irelli R, Mura A, Milillo A, Maggi M, Roelof E, Brandt P, Szego K, Scherrer J, Bochsler P (2008) Mars express and Venus express multi-point observations of geoeffective solar flare events in December 2006. Planet Space Sci 56: 873

    ADS  Google Scholar 

  • Gershberg RE (2005) Solar-type activity in main-sequence Stars. Springer, Berlin

    Google Scholar 

  • Gibb EL, Whittet DCB, Boogert ACA, Tielens AGGM (2004) Interstellar ice: the infrared space observatory legacy. ApJ S 151: 35

    ADS  Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319: 618

    ADS  Google Scholar 

  • Grasset O, Sotin C, Deschamps F (2000) On the internal structure and dynamics of Titan. Planet Space Sci 48: 7

    Google Scholar 

  • Grenfell JL, Stracke B, von Paris P, Patzer B, Titz R, Segura A, Rauer H (2007) The response of atmospheric chemistry on Earth-like planets around F, G and K stars to small variations in orbital distance. Planet Space Sci 55: 661

    ADS  Google Scholar 

  • Grenfell JL, von Paris P, Stracke B, Rauer H (2008) Photochemical responses of biomarkers in Super-Earth atmospheres. Planet Space Sci (to be submitted)

  • Grießmeier J-M, Stadelmann A, Penz T, Lammer H, Selsis F, Ribas I, Guinan IF, Motschmann U, Biernat HK, Weiss WW (2004) The effect of tidal locking on the magnetospheric and atmospheric evolution of “Hot Jupiters”. Astron Astrophys 425: 753

    ADS  Google Scholar 

  • Grießmeier J-M, Stadelmann A, Motschmann U, Belisheva NK, Lammer H, Biernat HK (2005) Cosmic ray impact on extrasolar Earth-like planets in close-in habitable zones. Astrobiology 5: 587

    ADS  Google Scholar 

  • Grießmeier J-M, Stadelmann A, Grenfell JL, Lammer H, Motschmann U (2008) On the protection of extrasolar Earth-like planets around light K/heavy M stars against galactic cosmic rays. Icarus (accepted)

  • Hamilton DC, Gloeckler G, Ipavich FM, Studemann W, Wilken B, Kremser G (1986) Ring current development during the great geomagnetic storm of February. J Geophys Res 93: 14343

    ADS  Google Scholar 

  • Hart MH (1978) The evolution of the atmosphere of the earth. Icarus 33: 23

    ADS  Google Scholar 

  • Hart MH (1979) Habitable zones around main sequence stars. Icarus 37: 351

    ADS  Google Scholar 

  • Heikkila WJ, Winningham JD (1971) Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps. J Geophys Res 76: 883

    ADS  Google Scholar 

  • Henning T, Salama F (1998) Carbon in the Universe. Science 282: 2204

    ADS  Google Scholar 

  • Henning T, Jäger C, Mutschke H (2004) Laboratory studies of carbonaceous dust analogs. In: Witt AW, Clayton GC, Draine BT (eds) Astrophysics of Dust, ASP Conference Series, vol 309, p 603

  • Holtom PD, Bennett CJ, Osamura Y, Mason NJ, Kaiser RI (2005) A combined experimental and theoretical study on the formation of the amino acid glycine (NH2CH2COOH) and its isomer (CH3NHCOOH) in extraterrestrial ices. Astrophys J 626: 940–952

    ADS  Google Scholar 

  • Holzwarth V, Jardine M (2007) Mass loss rates and wind ram pressures of cool stars. Astron Astrophys 463: 11

    MATH  ADS  Google Scholar 

  • Houdebine ER, Foing BH, Rodonò M (1990) Dynamics of flares on late-type dMe stars. I. Flare mass ejections and stellar evolution. Astron Astrophys 238: 249

    ADS  Google Scholar 

  • Huang SS (1959) Occurrence of life in the universe. Am Sci 47: 397

    Google Scholar 

  • Huang SS (1960) The sizes of habitable planets. Publ Astron Soc Pac 72: 489

    ADS  Google Scholar 

  • Ingersoll AP (1969) The runaway greenhouse: a history of water on Venus. J Atmos Sci 26: 1191

    ADS  Google Scholar 

  • Israël G, Szopa C, Raulin F, Cabane M, Niemann HB, Atreya SK, Bauer SJ, Brun J-F, Chassefière E, Coll P, Condé E, Coscia D, Hauchecorne A, Millian P, Nguyen MJ, Owen T, Riedler W, Samuelson RE, Siguier J-M, Steller M, Sternberg R, Vidal-Madjar C (2005) Evidence for the presence of complex organic matter in Titan’s aerosols by in situ analysis. Nature 438: 796

    ADS  Google Scholar 

  • Janle P, Jannsen D (1984) Tectonics of the southern escarpment of Ishtar Terra on Venus from observations of morphology and gravity. Earth Moon Planets 31: 141. doi:10.1007/BF00055526

    ADS  Google Scholar 

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418: 214

    ADS  Google Scholar 

  • Khare BN, Sagan C, Ogino H, Nagy B, Er C, Schram KH, Arakawa ET (1986) Amino acids derived from Titan tholins. Icarus 68: 176

    ADS  Google Scholar 

  • Kaltenegger L, Selsis F (2007) Biomarkers set in context, in Extrasolar Planets. In: Dvorak R (eds) Extrasolar planets. Wiley-VCH, Berlin, pp 75–98

    Google Scholar 

  • Kaltenegger L, Eiroa C, Fridlund M (2009) Target star catalogue for Darwin: Nearby Stellar sample for a search for terrestrial planets. A&A, arXiv:0810.5138v1<http://arxiv.org/abs/0810.5138v1> (in press)

  • Kasting JF (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74: 472

    ADS  Google Scholar 

  • Kasting JF (1992) Venus: The case for a wet origin and a runaway greenhouse. In: Lunar and Planetary Inst., Papers Presented to the International Colloquium on Venus, pp 54–55

  • Kasting JF (2004) When methane made climate. Sci Am 291: 80

    Google Scholar 

  • Kasting JF, Catling D (2003) Evolution of a habitable planet. Ann Rev Astron Astrophys 41: 429. doi:10.1146/annurev.astro.41.071601.170049

    ADS  Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101: 108

    ADS  Google Scholar 

  • Keppens R, MacGregor KB, Charbonneau P (1995) On the evolution of rotational velocity distributions for solar-type stars. Astron Astrophys 294: 469

    ADS  Google Scholar 

  • Khodachenko ML, Lammer H, Lichtenegger HIM, Langmayr D, Erkaev NV, Grießmeier J-M, Leitner M, Penz T, Biernat HK, Motschmann U, Rucker HO (2007a) Mass loss of “Hot Jupiters”—implications for CoRoT discoveries. Part I: the importance of magnetospheric protection of a planet against ion loss caused by coronal mass ejections. Planet Space Sci 55: 631

    ADS  Google Scholar 

  • Khodachenko ML, Ribas I, Lammer H, Grießmeier J-M, Leitner M, Selsis F, Eiroa C, Hanslmeier A, Biernat HK, Farrugia CJ, Rucker HO (2007b) Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. Astrobiology 7: 167

    ADS  Google Scholar 

  • Kiyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci USA 99: 14628–14631

    ADS  Google Scholar 

  • Kliore AJ, Luhmann JG (1991) Solar cycle effects on the structure of the electron density profiles in the dayside ionosphere of Venus. J Geophys Res 96: 21281

    ADS  Google Scholar 

  • Kraft RP (1967) Studies of stellar rotation. V. The dependence of rotation on age among solar-type stars. ApJ 150: 551

    ADS  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C(60): Buckminsterfullerene. Nature 318: 162

    ADS  Google Scholar 

  • Kuan Y, Charnley SB, Huang H, Tseng W, Kisiel Z (2003) Interstellar glycine. Astrophys J 593: 848

    ADS  Google Scholar 

  • Kulikov Yu N, Lammer H, Lichtenegger HIM, Terada N, Ribas I, Kolb C, Langmayr D, Lundin R, Guinan EF, Barabash S, Biernat HK (2006) Atmospheric and water loss from early Venus. Planet Space Sci 54: 1425

    ADS  Google Scholar 

  • Kulikov Yu N, Lammer H, Lichtenegger HIM, Penz T, Breuer D, Spohn T, Lundin R, Biernat HK (2007) A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus and Mars. Space Sci Rev 129: 207. doi:10.1007/s11214-007-9192-4

    ADS  Google Scholar 

  • Kwok S (2004) The synthesis of organic and inorganic compounds in evolved stars. Nature 430: 985

    ADS  Google Scholar 

  • Lammer H (2007) Preface: M Star planet habitability. Astrobiology 7(1): 27

    ADS  Google Scholar 

  • Lammer H, Lichtenegger HIM, Kulikov YN, Grießmeier J-M, Terada N, Erkaev NV, Biernat HK, Khodachenko ML, Ribas I, Penz T, Selsis F (2007) Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. Astrobiology 7: 185

    ADS  Google Scholar 

  • Lammer H, Kasting JF, Chassefière E, Johnson RE, Kulikov YuN, Tian F (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev. doi:10.1007/s11214-008-9413-5

  • Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci 92(18): 8158

    ADS  Google Scholar 

  • Langlais B, Leblanc F, Fouchet T, Barabash S, Breuer D, Chassefière E, Coates A, Dehant V, Forget F, Lammer H, Lewis S, Lopez-Valverde M, Mandea M, Menvielle M, Pais A, Paetzold M, Read P, Sotin C, Tarits P, Vennerstrom S, Branduardi-Raymont G, Cremonese G, Merayo JGM, Ott T, Rème H, Trotignon JG, , (2009) Mars environment and magnetic orbiter model payload. Exp Astron 23: 761. doi:10.1007/s10686-008-9101-1

    ADS  Google Scholar 

  • Lenardic A, Kaula WM, Bindschadler DL (1991) The tectonic evolution of western Ishtar Terra, Venus. Geophys Res Lett 18: 2209

    ADS  Google Scholar 

  • Léger A, Selsis F, Sotin C, Guillot T, Despois D, Mawet D, Ollivier M, Labèque FA, Valette Brachet C, Chazelas B, Lammer H (2004) A new family of planetes? “Ocean-Planets”. Icarus 169: 499

    ADS  Google Scholar 

  • Lillis RJ, Manga M, Mitchell DL, Lin RP, Acuña MH (2006) Unusual magnetic signature of the Hadriaca Patera Volcano: Implications for early Mars. Geophys Res Lett 33: L03202. doi:10.1029/2005GL024905

    Google Scholar 

  • Lim J, White SM (1996) Limits to mass outflows from late-type dwarf stars. ApJ 462: L91

    ADS  Google Scholar 

  • Lin DNC, Bodenheimer P, Richardson DC (1996) Orbital migration of the planetary companion of 51 Pegasis to its present location. Nature 380: 606

    ADS  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science. doi:10.1126/science.1167856

  • Lorenz RD The Cassini RADAR team (2008) Fluvial channels on Titan: initial Cassini RADAR observations. Planet Space Sci 56: 1132

    ADS  Google Scholar 

  • Luisi PL, Varela FJ (1989) Self-replicating micelles—a chemical version of a minimal autopoietic system. Orig Life Evol Biosph 19(6): 633–643

    ADS  Google Scholar 

  • Luisi PL, Walde P, Oberholzer T (1999) Lipid vesicles as possible intermediates in the origin of life. Curr Opin Colloid Interface Sci 4(1): 33–39

    Google Scholar 

  • Lundin R, Zakharov A, Pellinen R, Barabasj SW, Borg H, Dubinin EM, Hultqvist B, Koskinen H, Liede I, Pissarenko N (1990) ASPER/PHOBOS measurements of the ion outflow from the Martian ionosphere. Geophys Res Lett 17: 873

    ADS  Google Scholar 

  • Lundin R, Lammer H, Ribas I (2007) Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci Rev. doi:10.1007/s11214-007-9176-4

  • Madigan MT, Marrs BL (1997) Extremophiles. Sci Am 97: 82–87

    Article  Google Scholar 

  • Manning CV, McKay CP, Zahnle KJ (2006) Thick and thin models of the evolution of carbon dioxide on Mars. Icarus 180: 38

    ADS  Google Scholar 

  • Matson DJ, Atreya SJ, Castillo-Rogez JJ, Johnson T, Adams E, Lunine J (2007) Endogenic Origin of Titan’s N2 American Geophysical Union, Fall Meeting 2007, abstract #P21D-04

  • Mathis JS, Mezger PG, Panagia N (1983) Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. ApJ 128: 212

    ADS  Google Scholar 

  • McKay CP, Smith HD (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178: 274

    ADS  Google Scholar 

  • McKay CP, Stoker CR (1989) The early environment and its evolution on Mars: implications for life. Rev Geophys 27: 189

    ADS  Google Scholar 

  • Meierhenrich UJ, Muñoz Caro GM, Bredehöft JH, Jessberger EK, Thiemann WH-P (2004) Identification of diamino acids in the murchison meteorite. Proc Natl Acad Sci USA 101: 9182–9186

    ADS  Google Scholar 

  • Melosh HJ, Vickery AM (1989) Impact erosion ofthe primordial atmosphere of Mars. Nature 338: 487

    ADS  Google Scholar 

  • Mennella V, Colangeli L, Bussoletti E, Palumbo P, Rotundi A (1998) A new approach to the puzzle of the ultraviolet interstellar extinction bump. ApJ 507: 177

    ADS  Google Scholar 

  • Mihalov JD, Russell CT, Kasprzak WT, Knudsen WC (1995) Observations of ionospheric escape on Venus’ nightside. J Geophys Res 100: 19579

    ADS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117: 528–529

    ADS  Google Scholar 

  • Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334: 609–611

    ADS  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive Earth. Science 130: 245

    ADS  Google Scholar 

  • Mishima O, Endo S (1978) Melting curve of ice VII. J Chem Phys 68: 4417

    ADS  Google Scholar 

  • Moore TE, Lundin R, Alcayde D, Andre M, Ganguli SB, Temerin M, Yau A (1999) Source processes in the high-latitude ionosphere, Ch. 2 in Source and loss processes of the magnetospheric plasma. Space Sci Rev 88: 7

    ADS  Google Scholar 

  • Mullan DJ, Stencel RE, Backman DE (1989) Far-infrared properties of flare stars and dM stars. ApJ 343: 400

    ADS  Google Scholar 

  • Nelson DR (2004) Earth’s formation and first billion years. In: Eriksson PG et al (eds) The Precambrian Earth: tempos and events. Dev Precambrian Geol 12:3

  • Newkirk G Jr (1980) Solar variability on time scales of 105 years to 109.6 years. Geochim Cosmochim Acta Suppl 13: 293

    Google Scholar 

  • Nguyen M-J, Raulin F, Coll P, Derenne S, Szopa C, Cernogora G, Israël G, Bernard J-M (2007) Carbon isotopic enrichment in Titan’s tholins? Implications for Titan’s aerosols. Planet Space Sci 55: 2010

    ADS  Google Scholar 

  • Nielsen PE (1993) Peptide nucleic acid (PNA): a model structure for the primordial genetic material?. Orig Life Evol Biosph 23: 323–327

    ADS  Google Scholar 

  • Niemann HB, Atreya SK, Bauer SJ, Carignan GR, Demick JE, Frost RL, Gautier D, Haberman JA, Harpold DN, Hunten DM, Israel G, Lunine JI, Kasprzak WT, Owen TC, Paulkovich M, Raulin F., Raaen E, Way SH (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438: 779

    ADS  Google Scholar 

  • Nijman W, De Vries ST (2004) Early archaean crustal collapse structures and sedimentary basin dynamics. In: Eriksson PG et al (eds) The precambrian Earth: tempos and events. Dev Precambrian Geol 12:139

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409: 1083

    ADS  Google Scholar 

  • Olson P, Christensen UR (2006) Dipole moment scaling for convection-driven planetary dynamos. Earth Planet Sci Lett 250: 561

    ADS  Google Scholar 

  • Pendleton Y, Allamandola L (2002) The organic refractory material in the diffuse interstellar medium: Mid-infrared spectroscopic constraints. ApJ Suppl 138: 75

    ADS  Google Scholar 

  • Pham LBS, Karatekin Ö, Dehant V (2009) Effects of meteorite impacts on the atmospheric evolution of Mars. Astrobiology 9: 45

    ADS  Google Scholar 

  • Podolak M, Podolak JI, Marley MS (2000) Further investigations of random models of Uranus and Neptune. Planet Space Sci 48: 143

    ADS  Google Scholar 

  • Prasad SS, Tarafdar SP (1983) UV radiation field inside dense clouds—its possible existence and chemical implications. ApJ 267: 603

    ADS  Google Scholar 

  • Prigogine I, Nicolis G, Babloyants A (1972) Thermodynamics of evolution. Phys Today 25: 25

    Google Scholar 

  • Rappaport N, Bertotti B, Giampieri G, Anderson JD (1997) Doppler measurements of the quadrupole moments of Titan. Icarus 126: 313

    ADS  Google Scholar 

  • Rappaport NJ, Iess L, Tortora P, Anabtawi AI, Asmar SW, Somenzi L, Zingoni F (2007) Mass and interior of Enceladus from Cassini data analysis. Icarus 190: 175

    ADS  Google Scholar 

  • Rasool SI, deBergh C (1970) The runaway greenhouse and the accumulation of CO2 in the Venus atmosphere. Nature 226: 1037

    ADS  Google Scholar 

  • Rauer H, Erikson A (2008) The transit method. In: Dvorak D (eds) Extrasolar planets. Wiley-VCH, Weinheim, pp 207–240

    Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1982) Mass extinctions in the marine fossil record. Science 215: 1501

    ADS  Google Scholar 

  • Regenauer-Lieb K, Yuen DA, Branlund J (2001) The initiation of subduction: criticality by addition of water?. Science 294: 578

    ADS  Google Scholar 

  • Ribas I, Guinan EF, Güdel M, Audard M (2005) Evolution of the solar activity over time and effects on planetary atmospheres: I. High-energy irradiances (1–1700 Å). ApJ 622: 680

    ADS  Google Scholar 

  • Roelof EC, Sibeck DG (1993) Magnetopause shape as a bivariate function of interplanetary magnetic field B z and solar wind dynamic pressure. J Geophys Res 98: 21421

    ADS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409: 1092

    ADS  Google Scholar 

  • Roush T, Cruikshank D, Observations and Laboratory Data of Planetary Organics. In: Ehrenfreund P, Irvine WM, Owen T, Becker L, Blank J, Brucato JR, Colangeli L, Derenne S, Dutrey A, Despois D, Lazcano A, Robert F (eds) Astrobiology: future perspectives, astrophysics and space science library, vol 305. Kluwer, Dordrecht, pp 149–165

  • Ruiz-Mirazo K, Peretó J, Morene A (2004) A universal definition of life: autonomy and open-ended evolution. Orig Life Evol Biosphere 34: 323

    ADS  Google Scholar 

  • Russel CT (1993) Magnetic fields of the terrestrial planets. J Geophys Res 98: 18681

    ADS  Google Scholar 

  • Russell CT, Luhmann JG, Strangeway RJ (2006) The solar wind interaction with Venus through the eyes of the Pioneer Venus. Planet Space Sci 54: 1482. doi:10.1016/j.pss.2006.04.025

    ADS  Google Scholar 

  • Scalo J, Kaltenegger L, Segura AG, Fridlund M, Ribas I, Kulikov Yu N, Grenfell JL, Rauer H, Odert P, Leitzinger M, Selsis F, Khodachenko ML, Eiroa C, Kasting J, Lammer H (2007) M stars as targets for terrestrial exoplanet searchers and biosignature detection. Astrobiology 7: 85. doi:19.1089/ast.2006.0000

    ADS  Google Scholar 

  • Schopf JW (2004) Biologic History and the Cardinal Rule. American Geophysical Union, Fall Meeting 2004, abstract #U44A-01

  • Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237: 70

    ADS  Google Scholar 

  • Schubert G, Spohn T (1990) Thermal history of Mars and the sulfur content of its core. J Geophys Res 95: 14095

    ADS  Google Scholar 

  • Schubert G, Moore WB, Anderson JD, Jacobson RA, Lau EL (2000) Io’s gravity field and interior structure. AAS 32: 1046

    Google Scholar 

  • Schubert G, Anderson JD, Travis BJ, Palguta J (2007) Enceladus: present internal structure and differentiation by early and long-term radiogenic heating. Icarus 188: 345

    ADS  Google Scholar 

  • Segura A, Kaltenegger L (2008) Search for habitable planets. In: Basiuk VA, Navarro-González R (eds) Astrobiology: from simple molecules to primitive life.. American Scientific Publishers, New York (in press)

    Google Scholar 

  • Segura A, Krelove K, Kasting JF, Sommerlatt D, Meadows V, Crisp D, Cohen M, Mlawer E (2003) Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3: 689

    ADS  Google Scholar 

  • Segura A, Kasting JF, Meadows V, Cohen M, Scalo J, Crisp D, Butler RAH, Tinetti G (2005) Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5: 706

    ADS  Google Scholar 

  • Selsis F, Chazelas B, Bordéc P, Ollivier M, Brachet F, Decaudin M, Bouchy F, Ehrenreich D, Grießmeier J-M, Lammer H, Sotin C, Grasset O, Moutou C, Barge P, Deleuil M, Mawet D, Despois D, Kasting JF, Léger A (2007) Could we identify hot ocean-planets with CoRoT, Kepler and Doppler velocimetry. Icarus 191: 453

    ADS  Google Scholar 

  • Shue J-H, Chao JK, Fu HC, Russell CT, Song P, Khurana KK, Singer HJ (1997) A new functional form to study the solar wind control of the magnetopause size and missing authors and title has to be added. J Geophys Res 102: 9497

    ADS  Google Scholar 

  • Shue J-H, Song P, Russell CT, Steinberg JT, Chao JK, Zastenker G, Vaisberg OL, Kokubun S, Singer HJ, Detman TR, Kawano H (1998) Magnetopause location under extreme solar wind conditions. J Geophys Res 103: 17691

    ADS  Google Scholar 

  • Skumanich A (1972) Time scales for CA II emission decay, rotational braking, and lithium depletion. ApJ 171: 565

    ADS  Google Scholar 

  • Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342: 139

    ADS  Google Scholar 

  • Smith JDT, Draine BT, Dale DA, Moustakas J, Kennicutt RC Jr, Helou G, Armus L, Roussel H, Sheth K, Bendo GJ, Buckalew BA, Calzetti D, Engelbracht CW, Gordon KD, Hollenbach DJ, Li A, Malhotra S, Murphy EJ, Walter F (2007) The mid-infrared spectrum of star-forming galaxies: global properties of polycyclic aromatic hydrocarbon emission. ApJ 656: 770

    ADS  Google Scholar 

  • Snow T, McCall BJ (2006) Diffuse atomic and molecular clouds. Annu Rev Astron Astrophys 44: 367

    ADS  Google Scholar 

  • Soderblom DR (1982) Rotational studies of late-type stars. I—rotational velocities of solar-type stars. ApJ 263: 239

    ADS  Google Scholar 

  • Sohl F, Hussmann H, Schwentker B, Spohn T, Lorenz RD (2003) Interior structure models and Love numbers of Titan. J Geophys Res 108. doi:10.1029/2003JE002044.5130

  • Solomatov VS (2004) Initiation of subduction by small-scale convection. J Geophys Res 109. doi:10.1029/2003JB002628

  • Spaans M (2004) The Synthesis of the Elements and the Formation of Stars. In: Ehrenfreund P, Irvine WM, Owen T, Becker L, Blank J, Brucato JR, Colangeli L, Derenne S, Dutrey A, Despois D, Lazcano A, Robert F (eds) Astrobiology: future perspectives, astrophysics and space science library, vol 305. Kluwer, Dordrecht, pp 1–16

    Google Scholar 

  • Spohn T, Sohl F, Breuer D (1998) Mars. Astron Astrophys Rev 8: 181

    ADS  Google Scholar 

  • Stevenson DJ (1983) Planetary magnetic fields. Rep Prog Phys 46: 555

    ADS  Google Scholar 

  • Stevenson DJ (2001) Mars’ core and magnetism. Nature 412: 214

    ADS  Google Scholar 

  • Stevenson DJ (2003) Planetary magnetic fields. Earth Planet Sci Lett 208: 1

    ADS  Google Scholar 

  • Stevenson DJ, Spohn T, Schubert G (1983) Magnetism and thermal evolution of the terrestrial planets. Icarus 54: 466

    ADS  Google Scholar 

  • Stoker CR, Boston PJ, Mancinelli RL, Segal W, Khare BN, Sagan C (1990) Microbial metabolism of tholin. Icarus 85: 241

    ADS  Google Scholar 

  • Sundquist ET (1993) The global carbon dioxide budget. Science 259: 934

    ADS  Google Scholar 

  • Terada N, Kulikov Yu N, Lammer H, Lichtenegger HIM, Tanaka T, Shinagawa H, Zhang T (2009) Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9: 55. doi:10.1089/ast.2008.0250

    ADS  Google Scholar 

  • Tian F, Kasting JF, Liu H, Roble RG (2008) Hydrodynamic planetary thermosphere model. I: the response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J Geophys Res 113. doi:10.1029/2007JE002946

  • Tobie G, Grasset O, Lunine JI, Mocquet A, Sotin C (2005) Titan’s internal structure inferred from a coupled thermal-orbital model. Icarus 175: 496

    ADS  Google Scholar 

  • Tomasko MG, Archinal B, Becker T, Bézard B, Bushroe M, Combes M, Cook D, Coustenis A, deBergh C, Dafoe LE, Doose L, Douté S, Eibl A, Engel S, Gliem F, Greiger B, Holso K, Howington-Krause A, Karkoschka E, Keller U, Keuppers M, Kirk R, Kramm R, Lellouch E, Lemmon M, Lunine J, Markiewicz W, McFarlane L, Moores R, Prout M, Rizk B, Rosiek M, Rueffer P, Schroeder S, Schmitt B, Smith P, Soderblom L, Thomas N, West R (2005) Results from the descent imager/spectral radiometer (DISR) instrument on the Huygens probe of Titan. Nature 438: 765

    ADS  Google Scholar 

  • Trilling DE, Benz W, Guillot T, Lunine JI, Hubbard WB, Burrows A (1998) Orbital evolution and migration of giant planets. ApJ 500: 428

    ADS  Google Scholar 

  • Trinks H, Schröder W, Biebricher CK (2005) Ice and the origin of life. Orig Life Evol Biosph 35: 429–445

    ADS  Google Scholar 

  • Valencia D, O’Connell RJ, Sasselov DD (2007) Inevitability of plate tectonics on Super-Earths. ApJ 670: L45

    ADS  Google Scholar 

  • van den Oord GHJ, Doyle JG (1997) Constraints on mass loss from dMe stars: theory and observations. Astron Astrophys 319: 578

    ADS  Google Scholar 

  • Vidal-Madjar A (1978) The Earth hydrogen exobase near a solar minimum. Geophys Res Lett 5: 29

    ADS  Google Scholar 

  • von Paris P, Rauer H, Grenfell JL, Patzer B, Hedelt P, Stracke B, Trautmann T, Schreier F (2008) Warming the early Earth—CO2 reconsidered. Planet Space Sci 56: 1244

    ADS  Google Scholar 

  • Vorder Bruegge RW, Head JW (1990) Tectonic evolution of Eastern Ishtar Terra, Venus. Earth Moon Planets 50: 251–304. doi:10.1007/BF00142396

    ADS  Google Scholar 

  • Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci 87: 200–204

    Google Scholar 

  • Wächtershäuser G (2000) Origin of life: life as we don’t know it. Science 289(5483): 1307–1308

    Google Scholar 

  • Waite JH, Young DT, Cravens TE, Coates AJ, Crary FJ, Magee B, Westlake J (2007) The process of tholin formation in Titan’s upper atmosphere. Science 316: 870

    ADS  Google Scholar 

  • Walker JCG (1986) Impact erosion of planetary atmospheres. Icarus 68: 87

    ADS  Google Scholar 

  • Walker JCG, Turekian KK, Hunten DM (1970) An estimate of the present-day deep-mantle degassing rate from data on the atmosphere of Venus. J Geophys Res 75: 3558

    ADS  Google Scholar 

  • Ward WR (1997) Protoplanet migration by nebula tides. Icarus 126: 261

    ADS  Google Scholar 

  • Ward PD, Brownlee D (2000) Rare Earth: why complex life is uncommon in the Universe. Copernicus, Berlin

    Google Scholar 

  • Wargelin BJ, Drake JJ (2002) Stringent X-ray constraints on mass loss from Proxima Centauri. ApJ 578: 503

    ADS  Google Scholar 

  • Weber AL, Miller SL (1981) Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol 17: 273–284

    Google Scholar 

  • Westall F (2005) Life on the early Earth: a sedimentary view. Science 308: 366. doi:10.1126/science.1107227

    Google Scholar 

  • Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell CS, Lammer H (2006) Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Phil Trans R Soc 361: 1857. doi:10.1098/rstb.2006.1896

    Google Scholar 

  • Williams DM, Pollard D (2002) Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. Int J Astrobiol 1: 61

    Google Scholar 

  • Wilson OC (1966) Stellar convection zones, chromospheres, and rotation. ApJ 144: 695

    ADS  Google Scholar 

  • Wolstencroft RD, Raven JA (2002) Photosynthesis: likelihood of occurrence and possibility of detection on Earth-like planets. Icarus 157: 535

    ADS  Google Scholar 

  • Wood BE, Müller H-R, Zank GP, Linsky JL (2002) Measured mass-loss rates of solar-like stars as a function of age and activity. ApJ 574: 412

    ADS  Google Scholar 

  • Wood BE, Müller H-R, Zank GP, Izmodenov VV, Linsky JL (2004) The heliospheric hydrogen wall and astrospheres. Adv Space Res 34: 66

    ADS  Google Scholar 

  • Wood BE, Müller H-R, Zank GP, Linsky JL, Redfield S (2005) New mass loss measurements from astrospheric Ly-alpha absorption. Astrophys J 628: L143

    ADS  Google Scholar 

  • Wooden D, Charnley S, Ehrenfreund P (2004) Composition and evolution of interstellar clouds. In: Festou M et al (eds) Comets II. University of Arizona Press, Tucson, pp 33–66

    Google Scholar 

  • Worms J-C, Lammer H, Barucci A, Beebe R, Bibring J-P, Blamont J, Blanc M, Bonnet R, Brucato JR, Chassefière E, Coradini A, Crawford I, Ehrenfreund P, Falcke H, Gerzer R, Grady M, Grande M, Haerendel G, Horneck G, Koch B, Lobanov J, Lopez-Moreno JJ, Marco R, Norsk P, Rothery D, Swings J-P, Tropea C, Ulamec S, Westall F, Zarnecki J (2009) Science-driven scenario for space exploration: report from the European Space Sciences Committee (ESSC). Astrobiology 9: 23. doi:10.1089/ast.2007.1226

    ADS  Google Scholar 

  • Wuchterl G, Guillot T, Lissauer JJ (2000) Giant planet formation. In: Mannings V, Boss AP, Russell SS (eds) Protostars and Planets, vol IV. University of Arizona Press, Tucson, pp 1081–1109

    Google Scholar 

  • Yamauchi M, Lundin R (2001) Comparison of various cusp models with high- and low resolution observations. Space Sci Rev 95: 457

    ADS  Google Scholar 

  • Yamauchi M, Wahlund J-E (2007) Role of the ionosphere for the atmospheric evolution of planets. Astrobiology 7: 783

    ADS  Google Scholar 

  • Yamauchi M, Futaana Y, Fedorov A, Dubinin E, Lundin R, Sauvaud J-A, Winningham D, Frahm R, Barabash S, Holmstrom M, Woch J, Fraenz M, Budnik E, Borg H, Sharber, Coates AJ, Soobiah Y, Koskinen H, Kallio E, Asamura K, Hayakawa H, Curtis C, Hsieh KC, Sandel BR, Grande M, Grigoriev A, Wurz P, Orsini S, Brandt P, McKenna-Lawler S, Kozyra J, Luhmann J (2006) IMF direction derived from cycloid-like ion distribution observed by Mars Express. Space Sci Rev. doi:10.1007/s11214-006-9090-1

  • Zhang MHG, Luhmann JG, Kliore AJ, Russell CT (1990) A post-Pioneer Venus reassessment of the martian dayside ionosphere as observed by radio occultation methods. J Geophys Res 95: 14829

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammer, H., Bredehöft, J.H., Coustenis, A. et al. What makes a planet habitable?. Astron Astrophys Rev 17, 181–249 (2009). https://doi.org/10.1007/s00159-009-0019-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00159-009-0019-z

Keywords

Navigation