Skip to main content

Advertisement

Log in

Pulmonary Acinus: Understanding the Computed Tomography Findings from an Acinar Perspective

  • STATE OF THE ART REVIEW
  • Published:
Lung Aims and scope Submit manuscript

Abstract

The lung acinus is the most distal portion of the airway responsible for the gas exchange. The normal acini are not visible on conventional computed tomography (CT), but the advent of micro-CT improved the understanding of the microarchitecture of healthy acini. The comprehension of the acinar architecture is pivotal for the understanding of CT findings of diseases that involve the acini. Centriacinar emphysema, for example, presents as round areas of low attenuation due to the destruction of the most central acini with compensatory enlargement of proximal acini due to alveolar wall destruction. In pulmonary fibrosis, intralobular septal fibrosis manifests as acinar wall thickening with an overlap of acinar collapse and compensatory dilation of surrounding acini constituting the cystic disease typical of the usual interstitial pneumonia pattern. This is a state-of-the-art review to describe the acinar structure from the micro-CT perspective and display how the comprehension of the acinar structure can aid in the interpretation of its microarchitecture disruption on conventional CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SPL:

Secondary pulmonary lobule

CT:

Computed tomography

micro-CT:

Micro-computed tomography

3D:

Three-dimensional

TIB:

Tree-in-bud

COPD:

Chronic obstructive lung disease

UIP:

Usual interstitial pneumonia

IPF:

Interstitial pulmonary fibrosis

GGO:

Ground-glass opacities

µm:

Micrometer

References

  1. Webb WR (2006) Thin-section CT of the secondary pulmonary lobule: anatomy and the image—The 2004 Fleischner Lecture. Radiology 239(2):322–338

    Article  Google Scholar 

  2. Tsuda A, Filipovic N, Haberthür D, Dickie R, Matsui Y, Stampanoni M, Schittny JC (2008) Finite element 3D reconstruction of the pulmonary acinus imaged by synchrotron X-ray tomography. J Appl Physiol 105(3):964–976

    Article  CAS  Google Scholar 

  3. Haefeli-bleuer B, Weibel ER (1988) Morphometry of the human pulmonary acinus. Anat Rec 220(4):401–414

    Article  CAS  Google Scholar 

  4. Berend N, Rynell AC, Ward HE (1991) Structure of a human pulmonary acinus. Thorax 46:117–121

    Article  CAS  Google Scholar 

  5. Ritman EL (2005) Micro-computed tomography of the lungs and pulmonary-vascular system. Proc Am Thorac Soc 2(6):477–480

    Article  Google Scholar 

  6. Boerckel JD, Mason DE, Mcdermott AM, Alsberg E (2014) Microcomputed tomography: approaches and applications in bioengineering. Stem Cell Res Ther 5(6):144

    Article  Google Scholar 

  7. Oikonomou A, Prassopoulos P (2013) Mimics in chest disease: interstitial opacities. Insights Imaging 4(1):9–27

    Article  Google Scholar 

  8. Gotway MB, Reddy GP, Webb WR, Elicker BM, Leung JWT (2005) High-resolution CT of the lung: patterns of disease and differential diagnoses. Radiol Clin N Am 43(3):513–542

    Article  Google Scholar 

  9. Watz H, Breithecker A, Rau WS, Kriete A (2005) Micro-CT of the human lung: imaging of alveoli and virtual endoscopy of an alveolar duct in a normal lung and in a lung with centrilobular emphysema—Initial observations. Radiology 236:1053–1058

    Article  Google Scholar 

  10. Vasilescu DM, Phillion AB, Tanabe N et al (2017) Nondestructive cryomicro-CT imaging enables structural and molecular analysis of human lung tissue. J Appl Physiol Bethesda Md 1985 122:161–169

    Google Scholar 

  11. Kampschulte M, Schneider CR, Litzlbauer HD et al (2013) Quantitative 3D micro-CT imaging of human lung tissue. ROFO Fortschr Geb Rontgenstr Nuklearmed 185:869–876

    Article  CAS  Google Scholar 

  12. Senter-Zapata M, Patel K, Bautista PA, Griffin M, Michaelson J, Yagi Y (2016) The role of micro-CT in 3D histology imaging. Pathobiol J Immunopathol Mol Cell Biol 83:140–147

    Article  Google Scholar 

  13. Verleden SE, Vasilescu DM, Willems S et al (2014) The site and nature of airway obstruction after lung transplantation. Am J Respir Crit Care Med 189:292–300

    Article  Google Scholar 

  14. Mai C, Verleden SE, McDonough JE et al (2017) Thin-section CT features of idiopathic pulmonary fibrosis correlated with micro-CT and histologic analysis. Radiology 283:252–263

    Article  Google Scholar 

  15. Scott AE, Vasilescu DM, Seal KAD et al (2015) Three dimensional imaging of paraffin embedded human lung tissue samples by micro-computed tomography. PLoS ONE 10:e0126230

    Article  Google Scholar 

  16. Miller W (1947) The lung. III. Thomas, Springfield

    Google Scholar 

  17. Mai C, Verleden SE, McDonough JE et al (2016) Thin-section CT features of idiopathic pulmonary fibrosis correlated with micro-CT and histologic analysis. Radiology 283:252–263

    Article  Google Scholar 

  18. Lynch DA, Austin JHM, Hogg JC et al (2015) CT-Definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology 277:192–205

    Article  Google Scholar 

  19. Deng L, Xiao SM, Qiang JW, Li YA, Zhang Y (2017) Early Lung adenocarcinoma in mice: micro-computed tomography manifestations and correlation with pathology. Transl Oncol 10:311–317

    Article  Google Scholar 

  20. Sasaki M, Chubachi S, Kameyama N et al (2015) Evaluation of cigarette smoke-induced emphysema in mice using quantitative micro-computed tomography. Am J Physiol Lung Cell Mol Physiol 308:L1039–L1045

    Article  Google Scholar 

  21. Tanabe N, Vasilescu DM, McDonough JE et al (2017) Micro-computed tomography comparison of preterminal bronchioles in centrilobular and panlobular emphysema. Am J Respir Crit Care Med 195:630–638

    Article  Google Scholar 

  22. Li H, Zhang H, Tang Z, Hu G (2008) Micro-computed tomography for small animal imaging: Technological details. Prog Nat Sci 18(5):513–521

    Article  CAS  Google Scholar 

  23. Rossi SE, Franquet T, Volpacchio M, Giménez A, Aguilar G (2005) Tree-in-bud pattern at thin-section CT of the lungs: radiologic- pathologic overview. RadioGraphics 25(3):789–801

    Article  Google Scholar 

  24. Miller WT Jr, Panosian JS (2013) Causes and imaging patterns of tree-in-bud opacities. Chest 144(6):1883–1892

    Article  Google Scholar 

  25. Naidich DP, Bankier AA, MacMahon H, Schaefer-Prokop CM, Pistolesi M, Goo JM et al (2013) Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology 266(1):304–317

    Article  Google Scholar 

  26. Macmahon H, Austin JHM, Gamsu G, Herold CJ, Jett JR, Naidich DP et al (2005) Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 237:395–400

    Article  Google Scholar 

  27. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonar disease (2015). GOLD. http://www.goldcopd.org/. Accessed 4 Sept 2015

  28. Sharafkhaneh A, Hanania NA, Kim V (2008) Pathogenesis of emphysema: from the bench to the bedside. Proc Am Thorac Soc 5(4):475–477

    Article  Google Scholar 

  29. Takahashi M, Fukuoka J, Nitta N, Takazakura R, Nagatani Y, Murakami Y et al (2008) Imaging of pulmonary emphysema: A pictorial review. Int J COPD 3(2):193–204

    Article  Google Scholar 

  30. Foster WL, Gimenez EI, Roubidoux MA, Sherrier RH, Shannon RH, Roggli VL et al (1991) The emphysemas: radiologic-pathologic correlations. RadioGraphics 13(2):311–328

    Article  Google Scholar 

  31. Friedman PJ (2008) Imaging studies in emphysema. Proc Am Thorac Soc 5(4):494–500

    Article  Google Scholar 

  32. Engeler CE, Tashjian JH, Trenkner SW, Walsh JW (1993) Ground-glass opacity of the lung parenchyma: analysis with high-resolution CT. Am J Roentgenol 160(2):249–251

    Article  CAS  Google Scholar 

  33. Chang B, Hwang JH, Choi YH, Chung MP, Kim H, Kwon OJ et al (2013) Natural history of pure ground- glass opacity lung nodules detected by low-dose CT scan. Chest 143(1):172–178

    Article  Google Scholar 

  34. Arakawa H, Honma K (2011) Honeycomb lung: history and current concepts. Am J Roentgenol 196(4):773–782

    Article  Google Scholar 

  35. Travis WD, Costabel U, Hansell DM, King TE, Lynch DA, Nicholson AG et al (2013) An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188(6):733–748

    Article  Google Scholar 

  36. Ferguson EC, Berkowitz EA (2012) Lung CT: part 2, The interstitial pneumonias—clinical, histologic, and CT manifestations. Am J Roentgenol 199(4):W464–W476

    Article  Google Scholar 

  37. Mueller-Mang C, Grosse C, Schmid K, Stiebellehner L, Bankier A (2007) What every radiologist should know about idiopathic interstitial pneumonias. RadioGraphics 27(3):595–616

    Article  Google Scholar 

  38. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J (2008) Fleischner Society: glossary of terms for thoracic imaging. Radiology 246:697–722

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Hochhegger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochhegger, B., Langer, F.W., Irion, K. et al. Pulmonary Acinus: Understanding the Computed Tomography Findings from an Acinar Perspective. Lung 197, 259–265 (2019). https://doi.org/10.1007/s00408-019-00214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-019-00214-7

Keywords

Navigation