Skip to main content
Log in

Successive episodes of reactive liquid flow through a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion, Scotland. Unit 9 comprises an underlying lens-like body of peridotite overlain by a sequence of troctolite and gabbro (termed allivalite), with some local and minor anorthosite. The troctolite is separated from the overlying gabbro by a distinct, sub-horizontal, undulose horizon (the ‘major wavy horizon’). Higher in the stratigraphy is another, similar, horizon (the ‘minor wavy horizon’) that separates relatively clinopyroxene-poor gabbro from an overlying gabbro. To the north of the peridotite lens, both troctolite and gabbro grade into poikilitic gabbro. Clinopyroxene habit in the allivalite varies from thin rims around olivine in troctolite to equigranular crystals in gabbro and to oikocrysts in poikilitic gabbro. The poikilitic gabbros contain multiple generations of clinopyroxene, with Cr-rich (~1.1 wt% Cr2O3) anhedral cores with moderate REE concentrations (core1) overgrown by an anhedral REE-depleted second generation with moderate Cr (~0.7 wt% Cr2O3) (core2). These composite cores are rimmed by Cr-poor (~0.2 wt% Cr2O3) and REE-poor to -moderate clinopyroxene. We interpret these microstructures as a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite. Loss of clinopyroxene-saturated partial melt from the lower part of the allivalite immediately following the early stages of sill intrusion resulted in the formation of clinopyroxene-poor gabbro. The spatial extent of clinopyroxene loss is marked by the minor wavy horizon. A second partial melting event stripped out almost all clinopyroxene from the lowest allivalite to form a troctolite, with the major wavy horizon marking the extent of melting during this episode. The poikilitic gabbro formed from clinopyroxene-saturated melt moving upwards and laterally through the remobilized cumulate pile and precipitating clinopyroxene en route. This process, called reactive liquid flow, is potentially important in open magma chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aigner-Torres M, Blundy J, Ulmer P, Pettke T (2007) Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib Mineral Petrol 153:647–667

    Article  Google Scholar 

  • Allan JF, Sack RO, Batiza R (1988) Cr-rich spinels as petrogenetic indicators: MORB-type lavas from the Lamont seamont chain, eastern Pacific. Am Mineral 73:741–753

    Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algortithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1132

    Google Scholar 

  • Ayers JC, Watson EB (1991) Solubility of apatite, monazite, zircon and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philos T R Soc A 335:365–375

    Article  Google Scholar 

  • Banno Y, Miyawaki R, Kogure T, Matsubara S, Kamiya T, Yamada S (2005) Aspidolite, the Na analogue of phlogopite, from Kasuga-mura, Gifu Prefecture, central Japan: description and structural data. Mineral Mag 69(6):1047–1057

    Article  Google Scholar 

  • Bédard JH (1994) A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chem Geol 118:143–153

    Article  Google Scholar 

  • Bédard JH, Sparks RSJ, Renner R, Cheadle MJ, Hallworth MA (1988) Peridotite sills and metasomatic gabbros in the Eastern Layered Series of the Rhum complex. J Geol Soc London 145:207–224

    Article  Google Scholar 

  • Bell BR, Claydon RV (1992) The cumulus and post-cumulus evolution of chromespinels in ultrabasic layered intrusions; evidence from the Cuillin igneous complex, Isle of Skye, Scotland. Contrib Mineral Petrol 112:242–253

    Article  Google Scholar 

  • Bell BR, Williamson IT (2002) Tertiary igneous activity. In: Trewin NH (ed) The geology of Scotland, 4th edn. Geol Soc London, London, pp 371–408

    Google Scholar 

  • Berger A, Rosenberg CL (2003) Preservation of chemical residue-melt equilibria in natural anatexite: the effects of deformation and rapid cooling. Contrib Mineral Petrol 144:416–427

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Hendersen PE (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Brown GM (1956) The layered ultrabasic rocks of Rhum, Inner Hebrides. Philos T R Soc B 240:1–68

    Article  Google Scholar 

  • Butcher AR (1985) Channeled metasomatism in Rhum layered cumulates: evidence from late-stage veins. Geol Mag 122(5):503–518

    Article  Google Scholar 

  • Butcher A, Young IM, Faithfull JW (1985) Finger structures in the Rhum complex. Geol Mag 122(5):491–502

    Article  Google Scholar 

  • Cameron EN (1977) Chromite in the central sector of the Eastern Bushveld Complex, South Africa. Am Mineral 62:1082–1096

  • Donaldson CH (1974) Olivine crystal types in harrisitic rocks in the Rhum complex. Geol Mag 122:491–502

    Google Scholar 

  • Dungan MA, Davidson J (2004) Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: an example from the Chilean Andes. Geology 32(9):773–776

    Article  Google Scholar 

  • Dunham AC, Wilkinson FCF (1985) Sulphide droplets and the Unit 11/12 chromite nand, Rhum: a mineralogical study. Geol Mag 122(5):539–548

  • Emeleus CH (1997) Geology of Rum and the adjacent islands. Memoir of the British Geological Survey, Sheet 60 (Scotland)

  • Emeleus CH (2004) Rum solid geology map 1:20000. Scottish Natural Heritage

  • Emeleus CH, Gyopari MC (1992) British Tertiary Volcanic Province. Chapman & Hall, London

    Book  Google Scholar 

  • Faithfull JW (1985) The lower eastern layered series of Rhum. Geol Mag 122(5):459–468

    Article  Google Scholar 

  • Furlong KP, Hanson RB, Bowers JR (1991) Modeling thermal regimes. In: Ribbe PH (ed) Contact metamorphism. Mineral Society of America, Washington, pp 437–505

    Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Gieré R, Williams CT (1992) REE-bearing minerals in a Ti-rich vein from the Adamello contact aureole (Italy). Contrib Mineral Petrol 112:83–100

    Article  Google Scholar 

  • Greenwood RC, Donaldson CH, Emeleus CH (1990) The contact zone of the Rhum ultrabasic intrusion: evidence of peridotite formation from magnesian magmas. J Geol Soc 147:209–212

  • Grieco G, Ferrario A, Mathez EA (2004) The effect of metasomatism on the Cr-PGE mineralization in the Finero Complex, Ivrea Zone, Southern Alps. Ore Geol Rev 24:299–314

    Article  Google Scholar 

  • Guillong M, Meier DM, Allan MM, Heinrich CA, Yardley BWD (2008) SILLS: a Matlab-based program for the reduction of Laser Ablation ICP-MS data of homogeneous materials and inclusions. In: Sylvester P (ed) Laser-ablation-ICPMS in the earth sciences: current practices and outstanding issues. Mineralogical Association of Canada, Vancouver, pp 328–333

    Google Scholar 

  • Hamilton MA, Pearson DG, Thompson RN, Kelly SP, Emeleus CH (1998) Rapid eruption of Skye lavas inferred from precise U-Pb and Ar–Ar dating of the Rum and Cuillin plutonic complexes. Nature 394:260–263

    Article  Google Scholar 

  • Harlov DE, Austrheim H (2013) Metasomatism and the chemical transformation of rock: rock-mineral-fluid interaction in terrestrial and extraterrestrial environments. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Lecture Notes in Earth System Sciences. Springer, Berlin, pp 1–16

    Chapter  Google Scholar 

  • Henderson P (1975) Reaction trends shown by chrome-spinels of the Rhum layered intrusion. Geochem Cosmochem Ac 39:1035–1044

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Holness MB (1999) Contact metamorphism and anatexis of Torridonian arkose by minor intrusions of the Rum igneous complex, Inner Hebrides, Scotland. Geol Mag 136:527–542

    Article  Google Scholar 

  • Holness MB, Isherwood CE (2003) The aureole of the Rum Tertiary igneous complex, Scotland. J Geol Soc London 160:15–27

    Article  Google Scholar 

  • Holness MB, Winpenny B (2009) The Unit 12 allivalite, Eastern Layered Intrusion, Isle of Rum: a textural and geochemical study of an open-system magma chamber. Geol Mag 146(3):437–450

    Article  Google Scholar 

  • Holness MB, Hallworth MA, Woods A, Sides RE (2007) Infiltration metasomatism of cumulates by intrusive magma replenishment: the Wavy Horizon, Isle of Rum, Scotland. J Petrol 48(3):563–587

    Article  Google Scholar 

  • Holness MB, Humphreys MCS, Sides R, Helz RT, Tegner C (2012a) Towards an understanding of disequilibrium dihedral angles in mafic rocks. J Geophys Res 117:31p

    Google Scholar 

  • Holness MB, Richardson C, Helz RT (2012b) Disequilibrium dihedral angles in dolerite sills: a new proxy for cooling rate. Geology 40:795–798

    Article  Google Scholar 

  • Holness MB, Namur O, Cawthorn RG (2013) Disequilibrium dihedral angles in layered intrusions: a microstructural record of fractionation. J Petrol 54(10):2067–2093

    Article  Google Scholar 

  • Irvine TN (1977) Origin of chromite layers in the Muskox intrusion and other stratiform intrusions: a new perspective. Geology 5:273–277

  • Irvine TN (1980) Magmatic infiltration metasomatism, double-diffusive fractional crystallization, and adcumulus growth in the Muskox intrusion and other layered intrusions. In: Hagraves RB (ed) Physics of magmatic processes. Princeton University Press, New Jersey, pp 325–383

    Google Scholar 

  • Kelemen PB, Johnson KTM, Kinzler RJ, Irving AJ (1990) High-field-strength element depletions in arc basalts due to mantle-magma interaction. Nature 345:521–524

    Article  Google Scholar 

  • Kent RW (1995) Magnesian basalts from the Hebrides, Scotland: chemical composition and relationship to the Iceland plume. J Geol Soc 152:979–983

  • Kerr AC, Arndt NT (2001) A note on the IUGS reclassification of high-Mg and picritic volcanic rocks. J Petrol 42(11):2169–2171

    Article  Google Scholar 

  • Kimura J-I, Sano S (2012) Reactive melt flow as the origin of residual mantle lithologies and basalt chemistries in Mid-Ocean Ridges: implications from the Red Hills peridotite, New Zealand. J Petrol 53(8):1637–1671

    Article  Google Scholar 

  • Korenaga J, Kelemen PB (1997) Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: implications for magma transport in the oceanic lower crust. J Geophy Res 102(B12):27729–27749

    Article  Google Scholar 

  • Leuthold J, Müntener O, Baumgartner LP, Putlitz B (2014) Petrological constraints on the recycling of mafic crystal mushes and intrusion of braided sills in the Torres del Paine mafic complex (Patagonia). J Petrol 55(5):917–949

    Article  Google Scholar 

  • Lissenberg CJ, Dick HJB (2008) Melt-rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth Planet Sci Lett 271:311–325

    Article  Google Scholar 

  • Lissenberg CJ, MacLeod CJ, Howard KA, Godard M (2013) Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth Planet Sci Lett 361:436–447

    Article  Google Scholar 

  • McBirney AR (1996) The Skaergaard intrusion. In: Cawthorn RG (ed) Layered intrusions. Developments in petrology 15:147–180

  • McClurg J (1982) Geology and structure of the northern part of the Rhum ultrabasic complex. University of Edinburgh, Ph.D. thesis (unpublished)

  • McKenzie DP (1984) The generation and compaction of partially molten rock. J Petrol 25(3):713–765

    Article  Google Scholar 

  • Meyer R, Nicoll GR, Hertogen J, Troll VR, Ellam RM, Emeleus CH (2009) Trace element and isotope constraints on crustal anatexis by upwelling mantle melts in the North Atlantic Igneous Province: an example from the Isle of Rum, NW Scotland. Geol Mag 146(3):382–399

  • Mondal SK, Mathez EA (2007) Origin of the UG2 chromitite layer, Bushveld complex. J Petrol 48(3):495–510

    Article  Google Scholar 

  • Morse SA (1980) Basalts and phase diagrams: an introduction to the quantitative use of phase diagrams in igneous petrology. Springer, p 493

  • Morse SA (1996) Kiglapait mineralogy III: olivine compositions and Rayleigh fractionation models. J Petrol 37(5):1037–1061

    Article  Google Scholar 

  • Namur O, Charlier B, Toplis MJ, Higgins MD, Liégeois JP, Vander Auwera J (2010) Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. J Petrol 51(6):1203–1236

    Article  Google Scholar 

  • Namur O, Humphreys MCS, Holness MB (2013) Lateral reactive infiltration in a vertical gabbroic crystal mush, Skaergaard intrusion, East Greenland. J Petrol 54(5):985–1016

    Article  Google Scholar 

  • O’Driscoll B, Hargraves RB, Emeleus CH, Troll VR, Donaldson CH, Reavy RJ (2007) Magmatic lineations inferred from anisotropy of magmatic susceptibility fabrics in Units 8, 9, and 10 of the Rum Eastern Layered Series, NW Scotland. Lithos 98:27–44

    Article  Google Scholar 

  • O’Driscoll B, Emeleus CH, Donaldson CH, Daly JS (2010) Cr-spinel seam petrogenesis in the Rum layered suite, NW Scotland: cumulate assimilation and in situ crystallization in a deforming crystal mush. J Petrol 51(6):1171–1201

    Article  Google Scholar 

  • O’Hara MJ, Herzberg C (2002) Interpretation of trace element and isotope features of basalts: relevance of fi eld relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis. Geochem Cosmochem Acta 66:2167–2191

    Article  Google Scholar 

  • O’Driscoll B, Donaldson CH, Daly JS, Emeleus CH (2009) The roles of melt infiltration and cumulate assimilation in the formation of anorthosite and a Cr-Spl seam in the Rum Eastern Layered Intrusion, NW Scotland. Lithos 111:6–20

    Article  Google Scholar 

  • Osborn EF, Tait DB (1952) The system diopside–forsterite–anorthite. Am J Sci, Bowen v, 413–433

  • Palacz ZA (1984) Isotopic and geochemical evidence for the evolution of a cyclic unit in the Rhum intrusion, north-west Scotland. Nature 307:618–620

    Article  Google Scholar 

  • Palacz ZA (1985) Sr–Nd–Pb isotopic evidence for crustal contamination in the Rhum intrusion. Earth Planet Sci Lett 74:35–44

    Article  Google Scholar 

  • Park B-J, Jang Y-D, Choo C-O, Lee I, Kim J-J (2010) Trace element variation in olivine in the Skaergaard intrusion: petrologic implications. Geosci J 14(4):345–358

    Article  Google Scholar 

  • Polteau S, Mazzini A, Gallad O, Planke S, Malthe-Sorenssen A (2008) Saucer-shaped intrusions: occurrences, emplacement and implications. Earth Planet Sci Lett 266:195–204

    Article  Google Scholar 

  • Power MR, Pirrie D, Andersen JCO, Butcher AR (2000) Stratigraphical distribution of platinium-group minerals in the Eastern Layered Series, Rum, Scotland. Miner Depos 35:762–775

    Article  Google Scholar 

  • Prinzhofer A, Allègre CJ (1985) Residual peridotites and the mechanisms of partial melting. Earth Planet Sci Lett 74:251–265

    Article  Google Scholar 

  • Reiners PW (1998) reactive melt transport in the mantle and geochemical signatures of mantle-derived magmas. J Petrol 39(5):1039–1061

    Article  Google Scholar 

  • Renner R, Palacz Z (1987) Basaltic replenishment of the Rhum magma chamber: evidence from unit 14. J Geol Soc London 144:961–970

    Article  Google Scholar 

  • Roeder PL, Reynolds I (1991) Crystallization of chromite and chromium solubility in basaltic melts. J Petrol 32(5):909–934

    Article  Google Scholar 

  • Saunders AD, Fitton JG, Kerr AC, Norry MJ, Kent RW (1997) The North Atlantic igneous province. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic, and planetary flood volcanism. American Geophysical Union, Washington, pp 45–93

    Google Scholar 

  • Sides R (2008) Crystal mushes in mafic magma chamber. Ph.D. thesis, University of Cambridge

  • Solano JMS, Jackson MD, Sparks RSJ, Blundy JD, Annen C (2012) Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. J Petrol 53(10):1999–2026

    Article  Google Scholar 

  • Song X-Y, Qi H-W, Hu R-Z, Chen L-M, Yu S-Y (2013) Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: evidence from the Panzhihua intrusion, SW China. Geochem Geophys Geosyst 14(3):712–732

    Article  Google Scholar 

  • Soulard H, Boivin P, Libourel G (1994) Liquid-forsterite-anorthite-spinel assemblage at 1 bar in the CMAS system: implications for low-pressure evolution of high-Al and high-Mg magmas. Eur J Mineral 6(5):633–646

    Article  Google Scholar 

  • Spandler C, Mavrogenes J, Arculus R (2005) Origin of chromitites in layered intrusions: evidence from chromite-hosted melt inclusions from the stillwater complex. Geology 33(11):892–896

    Article  Google Scholar 

  • Sparks RSJ, Huppert HE, Kerr RC, McKenzie DP, Tait SR (1985) Postcumulus processes in layered intrusions. Geol Mag 122(5):555–568

    Article  Google Scholar 

  • Stickels CA, Hücke EE (1964) Measurement of dihedral angles. Metall Trans 230:795–801

    Google Scholar 

  • Tait S (1985) Fluid dynamic and geochemical evolution of cyclic unit 10, Rhum, Eastern Layered Series. Geol Mag 122(5):469–484

    Article  Google Scholar 

  • Tegner C, Wilson JR (1993) A late ultramafic suite in the Kap Edvard Holm layered gabbro complex, East Greanland. Geol Mag 130(4):431–442

    Article  Google Scholar 

  • Tegner C, Thy P, Holness MB, Jakobsen JK, Lesher CE (2009) Differentiation and compaction in the Skaergaard intrusion. J Petrol 50(5):813–840

    Article  Google Scholar 

  • Tepley FJ, Davidson JP (2003) Mineral-scale Sr-isotope constraints on magma evolution and chamber dynamics in the Rum layered intrusion, Scotland. Contrib Mineral Petrol 145:628–641

    Article  Google Scholar 

  • Thomson K, Hutton D (2004) Geometry and growth of sill complexes: insights using 3D seismic from the North Rockfall Trough. Bull Volcanol 66:634

    Google Scholar 

  • Troll VR, Nicoll GR, Donaldson CH, Emeleus HC (2008) Dating the onset of volcanism at the Rum Igneous Centre, NW Scotland. J Geol Soc London 165:651–659

  • Upton BGJ, Skovgaard AC, McClurg J, Kirstein L, Cheadle M, Emeleus CH, Wadsworth WJ, Fallick AE (2002) Picritic magmas and the Rum ultramafic complex, Scotland. Geol Mag 139:437–452

    Article  Google Scholar 

  • Van der Wal D, Bodiner J-L (1996) Origin of the recrcystallisation front in the Ronda peridotite by km-scale pervasive porous melt flow. Contrib Mineral Petrol 122:387–405

    Article  Google Scholar 

  • Volker JA (1983) The geology of the Trallval area, Rhum, Inner Hebrides. Ph. D. thesis, University of Edinburgh

  • Volker JA, Upton BGJ (1990) The structure and petrogenesis of the Trallval and Ruinsival areas of the Rhum ultrabasic complex. T R Soc Edinb Earth Sci 81:69–88

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181

    Article  Google Scholar 

  • Young IM (1984) Mixing of supernatant and interstitial fluids in the Rhum layered intrusion. Mineral Mag 48:345–350

    Article  Google Scholar 

  • Young IM, Donaldson CH (1985) Formation of granular-textured layers and laminae within the Rhum crystal pile. Geol Mag 122(5):519–528

    Article  Google Scholar 

Download references

Acknowledgments

Fieldwork in 2011 was supported by the University of Bristol. We thank Jean Bédard for advice in the field. We are grateful to Jean Bédard, Brian O’Driscoll, Valentin Troll, Steve Sparks and the Bristol Petrology Group (formerly BEEST) for discussions that helped us to improve our model. Special thanks are due to Stuart Kearns and Ben Buse for technical assistance with the EMPA, Bruno Dhuime and Chris Coath for technical assistance with the LA-ICP-MS analyses, and Jean-Claude Lavanchy for technical assistance with the XRF technique. We thank Scottish Natural Heritage for granting permission to collect in the Rum site of special scientific interest. This study was supported by the Swiss National Science Foundation (SNSF) prospective researcher grant (PBLAP2-134399/1) and Advanced Researcher grant (PA00P2_145348/1) to Julien Leuthold and ERC Advanced Grant CRITMAG and Wolfson Research Merit Award to Jon Blundy. Rais Latypov and two anonymous reviewers are gratefully acknowledged for their constructive and encouraging reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leuthold.

Additional information

Communicated by C. Ballhaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2014_1021_MOESM1_ESM.eps

Thermal evolution of the Rum Unit 9 cumulate (host gabbro temperature of 1,160 °C) when successively intruded by two picrite sills at 1,240 °C (at 0 and 200 years), using the equations of Furlong et al. (2001) (with time increments of 10 days and distance increments of 1.5 m). Dunite, troctolite and clinopyroxene-poor gabbro restite are respectively produced at 4.5, 15 and 84 m from the contact (EPS 727 kb)

Supplementary material 2 (XLS 27 kb)

Supplementary material 3 (XLS 32 kb)

Supplementary material 4 (XLS 289 kb)

Supplementary material 5 (PDF 6 kb)

Appendix 1: Quantification of successive reactive liquid flow episodes in a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)

Appendix 1: Quantification of successive reactive liquid flow episodes in a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)

Despite the fact that our model accounts for every observation so far, we are aware that the proposed quantitative model is not necessarily unique and different proportions of gabbro partial melting might also explain the cumulate evolution. Quantification is made especially difficult because of the superimposed successive partial melting events. Also the mineral saturation temperature and proportion rely on MELTS calculations, considering the Rum picrite liquid line of descent, but without knowing the exact pressure, water content and oxygen fugacity. The accuracy of MELTS in calculating crystallisation paths for these liquids is also unknown and requires some experimental verification.

Timing of picrite sills intrusions and solidification

Using the Θ cpp variation as a function of calculated crystallization times (Holness et al. 2012b), we can estimate the solidification timescale varying from 200 years in the basal clinopyroxene-poor gabbro, to 100 years in the gabbro body (4.5–11.8 m and the lower troctolite (−9.15 to −4.75 m), to less than 10 years in the central troctolite (−3.8 to −1.15 m).

Estimation of the protolith volume

We have demonstrated that the hybrid melt, generated by mixing of partial melt with invading reactive liquid was expelled from the heated allivalite. We have approximated the thickness of the original gabbro layer, prior to the two partial melting events, using equation 1.

$$ T_{ 2} = \left( { 100 - F} \right) \cdot T_{ 1} + L \cdot F \cdot T_{ 1} $$
(1)

With T 1 : the original thickness (m), T 2 : the residue thickness (m), F: the partial melting fraction (%) and L: the crystallized trapped interstitial melt fraction (%).

The 10-m-thick troctolite (T 2 ) corresponds to the residue after 72 % partial melting (F) of a ~24-m-thick (T 1 ) clinopyroxene-poor gabbro in which ~20 % hybrid interstitial melt has crystallized (L). Also, the clinopyroxene-poor gabbro (~26 m, T 2 ) was produced by crystallization of ~20 % trapped liquid (L′) in a partially molten (62 %, F′) ~ 52-m-thick gabbro column (T 1 ). The original gabbro column was ~67 m thick, but only 15 m remain today. The expelled liquid most likely was expelled into the overlying bulk magma in the chamber. Peridotite cumulates have also lost abundant interstitial melt. We have estimated the trapped liquid to have been ~40 vol% in the major peridotite body. Assuming the two subsequent sills had an identical thickness and composition, we propose 20 % olivine-phyric picritic magma emplaced as two 15-m-thick sills.

Thermal modelling

We have calculated the gabbro 1D thermal evolution when intruded by two olivine-phyric picrite sills, using Eqs. 2 and 3 (from Furlong et al. 1991), in a grid of i columns and j lines. For all nodes within the solution domain:

$$ \kappa = \frac{k}{c\rho } $$
(2)
$$ T_{i,j + 1} = \frac{\kappa \Delta t}{{(\Delta x)^{2} }}\left[ {T_{i + 1,j} - 2T_{i,j} + T_{i - 1,j} } \right] + T_{i,j}. $$
(3)

We used the constants of Furlong et al. (1991) for gabbro and peridotite respectively: κ the thermal diffusivity (m2 s−1), k the thermal conductivity (2.63–3.81 W m−1°K−1), c the heat capacity (897 and 1,000 m2 s−2°K−1), ρ the density (2,900–3,300 kg m−3), t the time [86,400 s (10 days)], x the distance (1.5 m) and T the temperature (°K). The boundary temperatures (T i=0 and T i = max) are maintained constant at the host rock temperature (1,160 °C).

Intrusions of two successive 15-m-thick olivine-phyric picrite at 1,240 °C, at an interval of 200 years, heat the host gabbro to 1,190 °C (i.e. plagioclase saturation) at 4.5 m, 1,180 °C (i.e. clinopyroxene saturation) at 15 m and 1,165 °C (i.e. gabbro with less than 25vol % clinopyroxene) at 84 m (Appendix Figure 1 in ESM). The maximal temperature at 10 m from the contact is reached ~30 years after each intrusion. The discrepancy between this simple model and the above volume estimates is largely covered by the model uncertainties and estimations. This model shows clinopyroxene, and also plagioclase close to the sill intrusion, are unstable, possibly producing a dunite restite. Thus, part of the peridotite cumulate might have been generated by gabbro partial melting and post-compaction crystallization of trapped hybrid liquid. O’Driscoll et al. (2007) suggested unconsolidated crystals could have slumped during central sagging of the Rum layered suite. If picrite sills crystals moved after their emplacement in the Unit 9, the volume of hot magma might be underestimated in our calculations, with important effects on the isotherm locations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leuthold, J., Blundy, J.D., Holness, M.B. et al. Successive episodes of reactive liquid flow through a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland). Contrib Mineral Petrol 168, 1021 (2014). https://doi.org/10.1007/s00410-014-1021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1021-7

Keywords

Navigation