Skip to main content
Log in

Resonant Forcing of Chaotic Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study resonances of multidimensional chaotic map dynamics. We use the calculus of variations to determine the additive forcing function that induces the largest response, that is, the greatest deviation from the unperturbed dynamics. We include the additional constraint that only select degrees of freedom be forced, corresponding to a very general class of problems in which not all of the degrees of freedom in an experimental system are accessible to forcing. We find that certain Lagrange multipliers take on a fundamental physical role as the efficiency of the forcing function and the effective forcing experienced by the degrees of freedom which are not forced directly. Furthermore, we find that the product of the displacement of nearby trajectories and the effective total forcing function is a conserved quantity. We demonstrate the efficacy of this methodology with several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashwin, S., Prabhakar, A.: A discrete map model for self-similar traffic generated by network protocols. In: TENCON 2003. Conference on Convergent Technologies for Asia–Pacific Region, vol. 1, p. 338 (2003)

  2. Bulsara, A.: No-nuisance noise. Nature 437, 962 (2005)

    Article  ADS  Google Scholar 

  3. Chang, K., Kodogeorgiou, A., Hübler, A., Jackson, E.A.: General resonance spectroscopy. Physica D 51, 99 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Eisenhammer, T., Hübler, A., Geisel, T., Lüscher, E.: Scaling behavior of the maximum energy exchange between coupled anharmonic oscillators. Phys. Rev. A 41, 3332 (1990)

    Article  ADS  Google Scholar 

  5. Foster, G., Hübler, A.W., Dahmen, K.: Resonant forcing of multidimensional chaotic map dynamics. Phys. Rev. E 75, 036212 (2007)

    Article  ADS  Google Scholar 

  6. Gerlach, U.H.: Linear mathematics in infinite dimensions. http://www.math.ohio-state.edu/~gerlach/math/BVtypset/ (2007)

  7. Gintautas, V., Hübler, A.W.: Experimental evidence for mixed reality states in an interreality system. Phys. Rev. E 75(5), 057201 (2007)

    Article  ADS  Google Scholar 

  8. Kapral, R., Fraser, S.J.: Dynamics of oscillators with periodic dichotomous noise. J. Stat. Phys. 70, 61 (1993)

    Article  MATH  Google Scholar 

  9. Krempl, S., Eisenhammer, T., Hübler, A., Mayer-Kress, G., Milonni, P.W.: Optimal stimulation of a conservative nonlinear oscillator: Classical and quantum-mechanical calculations. Phys. Rev. Lett. 69, 430 (1992)

    Article  ADS  Google Scholar 

  10. Mallick, K., Marcq, P.: Anharmonic oscillator driven by additive Ornstein–Uhlenbeck noise. J. Stat. Phys. 119, 1 (2005)

    Article  MATH  Google Scholar 

  11. Morton, J.B., Corrsin, S.: Consolidated expansions for estimating the response of a randomly driven nonlinear oscillator. J. Stat. Phys. 2, 153 (1970)

    Article  Google Scholar 

  12. Murdoch, W.W., Reeve, J.D.: Aggregation of parasitoids and the detection of density dependence in field populations. Oikos 50(1), 137 (1987)

    Article  Google Scholar 

  13. Plapp, B.B., Hübler, A.: Nonlinear resonances and suppression of chaos in the RF-biased Josephson junction. Phys. Rev. Lett. 65, 2302 (1990)

    Article  ADS  Google Scholar 

  14. Ruelle, D.: Resonances of chaotic dynamical systems. Phys. Rev. Lett. 56, 405 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  15. Siddiqi, I., Vijay, R., Pierre, F., Wilson, C.M., Frunzio, L., Metcalfe, M., Rigetti, C., Schoelkopf, R.J., Devoret, M.H., Vion, D., Esteve, D.: Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction. Phys. Rev. Lett. 94, 027005 (2005)

    Article  ADS  Google Scholar 

  16. Szalai, R., Stepan, G., Hogan, S.J.: Global dynamics of low immersion high-speed milling. Chaos 14(4), 1069 (2004)

    Article  ADS  Google Scholar 

  17. Wargitsch, C., Hübler, A.: Resonances of nonlinear oscillators. Phys. Rev. E 51, 1508 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wimberger, S., Mannella, R., Morsch, O., Arimondo, E.: Resonant nonlinear quantum transport for a periodically kicked Bose condensate. Phys. Rev. Lett. 94, 130404 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadas Gintautas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gintautas, V., Foster, G. & Hübler, A.W. Resonant Forcing of Chaotic Dynamics. J Stat Phys 130, 617–629 (2008). https://doi.org/10.1007/s10955-007-9444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9444-4

Keywords

Navigation