Skip to main content
Log in

Venus Surface Composition Constrained by Observation and Experiment

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ∼1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently.

High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus’ oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions.

Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to the rarity of wollastonite and instability of carbonate at the Venus surface. Sulfur in the Venus atmosphere has been shown experimentally to react with Ca in surface minerals to produce anhydrite. The extent of this SO2 buffer is constrained by the Ca content of surface rocks and sulfur content of the atmosphere, both of which are likely variable, perhaps due to active volcanism. Experimental work on a range of semiconductor and ferroelectric minerals is placing constraints on the cause(s) of Venus’ anomalously radar bright highlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • J.A. Adamchik, A.L. Draper, The temperature dependence of the Urey equilibrium and the problem of CO2 content of the atmosphere of Venus. Planet. Space Sci. 11, 1303–1307 (1963)

    Article  ADS  Google Scholar 

  • J.B. Adams, A.L. Filice, Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. J. Geophys. Res. 72(22), 5705–5715 (1967). doi:10.1029/JZ072i022p05705

    Article  ADS  Google Scholar 

  • D.A. Allen, J.W. Crawford, Cloud structure on the dark side of Venus. Nature 307, 222–224 (1984)

    Article  ADS  Google Scholar 

  • F.S. Anderson, S.E. Smrekar, Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res. 111, E08006 (2006). doi:10.1029/2004JE002395

    ADS  Google Scholar 

  • J. Arkani-Hamed, On the tectonics of Venus. Phys. Earth Planet. Inter. 76, 75–96 (1993)

    Article  ADS  Google Scholar 

  • R.E. Arvidson, R.A. Brackett, M.K. Shepard, N.R. Izenberg, B. Fegley Jr., J.J. Plaut, Microwave signatures and surface properties of Ovda Regio and surroundings, Venus. Icarus 112, 171–186 (1994)

    Article  ADS  Google Scholar 

  • D.C. Aveline, W.J. Abbey, M. Choukroun, A.H. Treiman, M.D. Dyar, S.E. Smrekar, S.M. Feldman, Rock and mineral weathering experiments under model Venus conditions. Lunar Planet. Sci. Conf. Abstr. 42, 2165 (2011)

    ADS  Google Scholar 

  • D.C. Bain, P.F.S. Ritchie, D.R. Clark, D.M.L. Duthie, Geochemistry and mineralogy of weathered basalt from Morvern. Scotland. Mineral. Mag. 43, 865–872 (1980)

    Article  Google Scholar 

  • K.H. Baines et al., Detection of sub-micron radiation from the surface of Venus by Cassini/VIMS. Icarus 48, 307–311 (2000)

    Article  ADS  Google Scholar 

  • V.L. Barsukov, V.P. Volkov, I.L. Khodakovsky, The crust of Venus: theoretical models of chemical and mineral composition. Proc. Lunar Planet. Sci. Conf. 13, A3–A9 (1982), J. Geophys. Res. 87

    ADS  Google Scholar 

  • A.T. Basilevsky, E.V. Shalygin, D.V. Titov, W.J. Markiewicz, F. Scholten, Th. Roatsch, M.A. Kreslavsky, L.V. Moroz, N.I. Ignatiev, B. Fiethe, B. Osterloh, H. Michalik, Geologic interpretation of the near-infrared images of the surface taken by the Venus Monitoring Camera, Venus Express. Icarus 217, 434–450 (2012). doi:10.1016/j.icarus.2011.11.003

    Article  ADS  Google Scholar 

  • M. Bauer, W.E. Klee, The monoclinic-hexagonal phase transition in chlorapatite. Eur. J. Mineral. 5, 307–316 (1993)

    Article  ADS  Google Scholar 

  • E.E. Bjonnes, V.L. Hansen, B. James, J.B. Swenson, Equilibrium resurfacing of Venus: results from new Monte Carlo modeling and implications for Venus surface histories. Icarus 217, 451–461 (2012)

    Article  ADS  Google Scholar 

  • B. Bonin, Extra-terrestrial igneous granites and related rocks: a review of their occurrence and petrogenesis. Lithos 153, 3–24 (2012)

    Article  ADS  Google Scholar 

  • R.A. Brackett, B. Fegley, R.E. Arvidson, Volatile transport on Venus and implications for surface geochemistry and geology. J. Geophys. Res., Planets 100, 1553–1563 (1995)

    Article  ADS  Google Scholar 

  • M. Brown, Granite: from genesis to emplacement. Geol. Soc. Am. Bull. 125, 1079–1113 (2013). doi:10.1130/B30877.1

    Article  ADS  Google Scholar 

  • E.A. Bruckenthal, R.B. Singer, Spectral effects of dehydration on phyllosilicates. Lunar Planet. Sci. Conf. 18, 135 (1987)

    ADS  Google Scholar 

  • M.A. Bullock, D.H. Grinspoon, The stability of climate on Venus. J. Geophys. Res. 101, 7521–7529 (1996)

    Article  ADS  Google Scholar 

  • M.A. Bullock, D.H. Grinspoon, The recent evolution of climate on Venus. Icarus 150, 19–37 (2001)

    Article  ADS  Google Scholar 

  • D.J.M. Burkhardt, T. Scherer, Surface oxidation of basalt glass/liquid. J. Non-Cryst. Solids 352, 241–247 (2006)

    Article  ADS  Google Scholar 

  • I.H. Campbell, S.R. Taylor, No water, no granites-no oceans, no continents. Geophys. Res. Lett. 10(11), 1061–1064 (1983)

    Article  ADS  Google Scholar 

  • B.A. Campbell, P.G. Rogers, B. Regio Venus, Integration of remote sensing data and terrestrial analogs for geologic analysis. J. Geophys. Res., Planets 99, 21153–21171 (1994)

    Article  ADS  Google Scholar 

  • B.A. Campbell, D.B. Campbell, C.H. DeVries, Surface processes in the Venus highlands: results from analysis of Magellan and Arecibo data. J. Geophys. Res., Planets 104, 1897–1916 (1999)

    Article  ADS  Google Scholar 

  • B.A. Campbell, D.B. Campbell, G.A. Morgan, L.M. Carter, M.C. Nolan, J.F. Chandler, Evidence for crater ejecta on Venus tessera terrain from Earth-based radar images. Icarus 250, 123–130 (2015). doi:10.1016/j.icarus.2014.11.025

    Article  ADS  Google Scholar 

  • R.W. Carlson, K.H. Baines, Th. Encrenaz, F.W. Taylor, P. Drossart, L.W. Kamp, J.B. Pollack, E. Lellouch, A.D. Collard, S.B. Calcutt, D.H. Grinspoon, P.R. Weissman, W.D. Smythe, A.C. Ocampo, G.E. Danielson, F.P. Fanale, T.V. Johnson, H.H. Kieffer, D.L. Matson, T.B. McCord, L. Soderblom, Galileo infrared imaging spectroscopy measurements at Venus. Science 253, 1541–1548 (1991)

    Article  ADS  Google Scholar 

  • L.M. Carter, D.B. Campbell, B.A. Campbell, Volcanic deposits in shield fields and highland regions on Venus: surface properties from radar polarimetry. J. Geophys. Res., Planets 111, (E6) (2006). doi:10.1029/2005JE002519

    Google Scholar 

  • A. Cathala, G. Berger, G.S. Pokrovski, Atmosphere-surface interactions at the Venus conditions: experiments and modeling. Lunar Planet. Sci. Conf. Abstr. 48, 1529 (2017)

    ADS  Google Scholar 

  • E.A. Cloutis, F.C. Hawthorne, S.A. Mertzman, K. Krenn, M.A. Craig, D. Marcino, M. Methot, J. Strong, J.F. Mustard, D.L. Blaney, J.F. Bell III., F. Vilas, Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 184, 121–157 (2006)

    Article  ADS  Google Scholar 

  • G.B. Cook, R.F. Cooper, T. Wu, Chemical diffusion and crystalline nucleation during oxidation of ferrous iron-bearing magnesium aluminosilicate glass. J. Non-Cryst. Solids 120, 207–222 (1990)

    Article  ADS  Google Scholar 

  • G.B. Cook, R.F. Cooper, Iron concentration and the physical processes of dynamic oxidation in an alkaline earth aluminosilicate glass. Am. Mineral. 85, 397–406 (2000)

    Article  ADS  Google Scholar 

  • R.F. Cooper, J.B. Fanselow, D.B. Poker, The mechanism of oxidation of a basaltic glass: chemical diffusion of network-modifying cations. Geochim. Cosmochim. Acta 60, 3253–3265 (1996)

    Article  ADS  Google Scholar 

  • D. Crisp, S. McNulldroch, S.K. Stephens, W.M. Sinton, B. Ragent, K.W. Ho- dapp, R.G. Probst, L.R. Doyle, D.A. Allen, J. Eias, Ground-based near-infrared imaging observations of Venus during the Galileo encounter. Science 253, 1538–1541 (1991)

    Article  ADS  Google Scholar 

  • J.A. Cutts, T.S. Balint, E. Chassefiere, E.A. Kolawa, Technology perspectives in the future exploration of Venus, in Exploring Venus as a Terrestrial Planet, ed. by L.W. Esposito, E.R. Stofan, T.E. Cravens. AGU Monograph Series, vol. 176 (2007), pp. 207–225, 250 pp.

    Chapter  Google Scholar 

  • A. Davaille, S.E. Smrekar, S. Tomlinson, Experimental and observational evidence for plume-induces subduction on Venus. Nat. Geosci. (2017). doi:10.1038/ngeo2928

    Google Scholar 

  • C. de Bergh et al., Deuterium on Venus: observations from Earth. Science 251, 547–549 (1991)

    Article  ADS  Google Scholar 

  • P. D’Incecco, N. Müller, J. Helbert, M. D’Amore, Idunn Mons on Venus: location and extent of recently active lava flows. Planet. Space Sci. 136, 25–33 (2017)

    Article  ADS  Google Scholar 

  • T.M. Donahue, J.H. Hoffman, R.R. Hodges, A.J. Watson, Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982)

    Article  ADS  Google Scholar 

  • P. Drossart et al., Scientific goals for the observation of Venus by VIRTIS on ESA/Venus Express mission. Planet. Space Sci. 55, 1653–1672 (2007)

    Article  ADS  Google Scholar 

  • R.A. Eggleton, C. Foudoulis, D. Varkevisser, Weathering of basalt: changes in rock chemistry and mineralogy. Clays Clay Mineral. 35, 161–169 (1987)

    Article  ADS  Google Scholar 

  • L. Elkins-Tanton, S.E. Smrekar, P.C. Hess, E.M. Parmentier, Volcanism and volatile recycling on a one-plate planet: applications to Venus. J. Geophys. Res. 112, E04S06 (2007). doi:10.1029/2006JE002793

    Article  Google Scholar 

  • R.E. Ernst, K.L. Buchan, D.W. Desnoyers, Plumes and plume clusters on Earth and Venus: evidence from large igneous provinces (LIPS), in Superplumes, ed. by D.A. Yuen et al.(Springer, Berlin, 2007), pp. 537–561

    Google Scholar 

  • L.W. Esposito, Sulfur dioxide: episodic injection shows evidence for active Venus volcanism. Science 223, 1072–1074 (1984)

    Article  ADS  Google Scholar 

  • B. Fegley Jr., Venus. Treatise on Geochemistry, vol. 1 (2004, 2003), pp. 487–507

    Google Scholar 

  • B. Fegley Jr., R.G. Prinn, Estimation of the rate of volcanism on Venus from reaction rate measurements. Nature 337(6202), 55–58 (1989)

    Article  ADS  Google Scholar 

  • B. Fegley Jr., A.H. Treiman, Chemistry of atmosphere-surface interactions on Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, ed. by J.G. Luhmann, M. Tatrallyay, R.O. Pepin (American Geophysical Union, Washington, 1992), pp. 7–71

    Google Scholar 

  • B. Fegley Jr., A.H. Treiman, V.L. Sharpton, Venus surface mineralogy: observational and theoretical constraints, in Proceedings of Lunar and Planetary Science, vol. 22 (Lunar and Planetary Institute, Houston, 1992), pp. 3–19

    Google Scholar 

  • B. Fegley Jr., G. Klingelhöfer, R.A. Brackett, N. Izenberg, D.T. Kremser, K. Lodders, Basalt oxidation and the formation of hematite on the surface of Venus. Icarus 118, 373–383 (1995a)

    Article  ADS  Google Scholar 

  • B. Fegley Jr., K. Lodders, A.H. Treiman, G. Klingelhöfer, The rate of pyrite decomposition on the surface of Venus. Icarus 115, 159–180 (1995b)

    Article  ADS  Google Scholar 

  • B. Fegley Jr., G. Klingelhöfer, K. Lodders, T. Widemann, Geochemistry of surface-atmosphere interactions on Venus, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (University of Arizona Press, Tucson, 1997a), pp. 591–636

    Google Scholar 

  • B. Fegley Jr., M.Yu. Zolotov, K. Lodders, The oxidation state of the lower atmosphere and surface of Venus. Icarus 125, 416–439 (1997b)

    Article  ADS  Google Scholar 

  • J. Filiberto, Magmatic diversity on Venus: constraints from terrestrial analog crystallization experiments. Icarus 231, 131–136 (2014)

    Article  ADS  Google Scholar 

  • J. Filiberto, A.H. Treiman, Geochemistry of Venus basalts with constraints on magma genesis. Lunar Planet. Sci. Conf. Abstr. 48, 1148 (2017)

    ADS  Google Scholar 

  • C.P. Florensky, O.V. Nikolaeva, V.P. Volkov, A.F. Kudryaskova, A.A. Pronin, Yu.M. Geektin, E.A. Tschaikina, A.S. Bashikirova, The oxidizing-reducing conditions on the surface of Venus according to the data of the “KONTRAST” geochemical indicator on the Venera 13 and Venera 14 spacecraft. Cosm. Res. 21, 278–281 (1983)

    ADS  Google Scholar 

  • P.G. Ford, G.H. Pettengill, Venus: global surface radio emissivity. Science 220, 1379–1381 (1983)

    Article  ADS  Google Scholar 

  • P.G. Ford, G.H. Pettengill, Venus topography and kilometer-scale slopes. J. Geophys. Res. 97, 13,103–13,114 (1992)

    Article  ADS  Google Scholar 

  • I. Garate-Lopez, R. Jueso, A. Sánchez-Lavega, J. Peralta, G. Piccioni, P. Drossart, A chaotic long-lived vortex at the southern pole of Venus. Nat. Geosci. 6, 254–257 (2013)

    Article  ADS  Google Scholar 

  • J.B. Garvin, J.W. Head, G.H. Pettengill, S.H. Zisk, Venus global radar reflectivity and correlations with elevation. J. Geophy. Res. 90(B8), 6859–6871 (1985)

    Article  ADS  Google Scholar 

  • P. Gavin, V. Chevrier, Thermal alteration of nontronite and montorillonite: implications for the martian surface. Icarus 208, 721–734 (2010)

    Article  ADS  Google Scholar 

  • M.S. Gilmore, Tellus Regio, Venus: evidence of tectonic assembly of tessera terrain and implications for exploration. Lunar Planet. Sci. Conf. Abstr. 40, 2015 (2009)

    ADS  Google Scholar 

  • M.S. Gilmore, J.W. Head, Sequential deformation of plains at the margins of Alpha Regio, Venus: implications for tessera formation. Meteorit. Planet. Sci. 35, 667–687 (2000)

    Article  ADS  Google Scholar 

  • M.S. Gilmore, M.A. Ivanov, J.W. Head, A.T. Basilevsky, Duration of tessera deformation on Venus. J. Geophys. Res. 102, 13357–13368 (1997)

    Article  ADS  Google Scholar 

  • M.S. Gilmore, N. Mueller, J. Helbert, VIRTIS emissivity of Alpha Regio, Venus, with implications for tessera composition. Icarus 254, 350–361 (2015). doi:10.1016/j.icarus.2015.04.008

    Article  ADS  Google Scholar 

  • B.J. Gladman, J.A. Burns, M. Duncan, P. Lee, H.F. Levinson, The exchange of impact ejecta between terrestrial planets. Science 271, 1387–1392 (1996)

    Article  ADS  Google Scholar 

  • T.D. Glotch et al., Highly silicic compositions on the Moon. Science 329, 1510–1513 (2010). 2013

    Article  ADS  Google Scholar 

  • R.E. Grimm, P.C. Hess, The crust of Venus, in Venus II, ed. by S.W. Bougher et al.(University of Arizona Press, Tuscon, 1997), pp. 1205–1244

    Google Scholar 

  • D.H. Grinspoon, Implications of the high deuterium-to-hydrogen ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993)

    Article  ADS  Google Scholar 

  • D.H. Grinspoon, M.A. Bullock, Astrobiology and Venus exploration, in Exploring Venus as a Terrestrial Planet, ed. by L.W. Esposito et al.. AGU Geophysical Monograph Series, vol. 176 (2007), pp. 191–206

    Chapter  Google Scholar 

  • J.P. Grotzinger, J.F. Kasting, New constraints on precambrian ocean composition. J. Geol. 101, 235–243 (1993)

    ADS  Google Scholar 

  • J. Guandique, E. Kohler, V. Chevrier, Stability of metallic minerals under Venusian surface temperatures: investigating the potential source of radar anomalies. Lunar Planet. Sci. Conf. Abstr. 45, 2391 (2014)

    ADS  Google Scholar 

  • J.E. Guest et al., Small volcanic edifices and volcanism in the plains of Venus. J. Geophys. Res. 97(E10), 15949–15966 (1992)

    Article  ADS  Google Scholar 

  • J.J. Hagerty, D.J. Lawrence, B.R. Hawke, D.T. Vaniman, R.C. Elphic, W.C. Feldman, Refined thorium abundances for lunar red spots: implications for evolved, non-mare volcanism on the Moon. J. Geophys. Res. 111, E06002 (2006). doi:10.1029/2005JE002592

    Article  ADS  Google Scholar 

  • A.N. Halliday, The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013)

    Article  ADS  Google Scholar 

  • E. Harrington, A.H. Treiman, The puzzle of radar-bright highlands on Venus: a high-spatial resolution study in Ovda Regio. Lunar Planet. Sci. Conf. Abstr. XLVI, 2713 (2015)

    ADS  Google Scholar 

  • G.A. Hashimoto, Y. Abe, Climate control on Venus: comparison of the carbonate and pyrite models. Planet. Space Sci. 53, 839–848 (2005)

    Article  ADS  Google Scholar 

  • G.L. Hashimoto, S. Sugita, On observing the compositional variability of the surface of Venus using nightside near-infrared thermal radiation. J. Geophys. Res. 108I, 5109 (2003). doi:10.1029/2003JE002082

    Article  ADS  Google Scholar 

  • G.A. Hashimoto, Y. Abe, S. Sasaki, CO2 amount on Venus constrained by a criterion of topographic-greenhouse instability. Geophys. Res. Lett. 24, 289–292 (1997)

    Article  ADS  Google Scholar 

  • G.L. Hashimoto, M. Roos-Serote, S. Sugita, M.S. Gilmore, L.W. Kamp, R.W. Carlson, K.H. Baines, Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data. J. Geophys. Res. 113, E00B24 (2008)

    Article  Google Scholar 

  • G.L. Hashimoto, M. Roos-Serote, S. Sugita, M.S. Gilmore, L.W. Kamp, R.W. Carlson, K.H. Baines, Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data. J. Geophys. Res. 113, E00B24 (2008). doi:10.1029/2008JE003134

    Article  Google Scholar 

  • R. Haus, G. Arnold, Radiative transfer in the atmosphere of Venus and application to surface emissivity retrieval from VIRTIS/VEX measurements. Planet. Space Sci. 58, 1578–1598 (2010). doi:10.1016/j.pss.2010.08.001

    Article  ADS  Google Scholar 

  • J.W. Head III., A.R. Peterfreund, J.B. Garvin, S.H. Zisk, Surface characteristics of Venus derived from Pioneer Venus altimetry, roughness, and reflectivity measurements. J. Geophys. Res. 90, 6873–6885 (1985)

    Article  ADS  Google Scholar 

  • J. Helbert, A. Maturilli, The emissivity of a fine-grained labradorite sample at typical Mercury dayside temperatures. Earth Planet. Sci. Lett. 285, 347–354 (2009)

    Article  ADS  Google Scholar 

  • J. Helbert, N. Müller, P. Kostama, L. Marinangeli, G. Piccioni, P. Drossart, Surface brightness variations seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus. Geophys. Res. Lett. 35, L11201 (2008). doi:10.1029/2008GL033609

    Article  ADS  Google Scholar 

  • J. Helbert, S. Ferrari, A. Maturilli, M.D. Dyar, N. Müller, S. Smrekar, Studying the surface composition of Venus in the near infrared. Lunar Planet. Sci. Conf. Abstr. 46, 1793 (2015)

    ADS  Google Scholar 

  • J. Helbert, A. Maturilli, M.D. Dyar, S. Ferrari, N. Müller, S. Smrekar, First set of laboratory Venus analog spectra for all atmospheric windows. Lunar Planet. Sci. Conf. Abstr. 48, 1512 (2017)

    ADS  Google Scholar 

  • R.R. Herrick, Resurfacing history of Venus. Geology 22, 703–706 (1994). doi:10.1130/0091-7613

    Article  ADS  Google Scholar 

  • R.R. Herrick, M.E. Rumpf, Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. J. Geophys. Res. 116, E02004 (2011). doi:10.1029/2010JE003722

    Article  ADS  Google Scholar 

  • R.R. Herrick, V.L. Sharpton, Implications from stereo-derived topography of Venusian impact craters. J. Geophys. Res. 105, 20245–20262 (2000). doi:10.1029/1999JE001225

    Article  ADS  Google Scholar 

  • Y. Hong, B. Fegley Jr., The kinetics and mechanism of pyrite thermal decomposition. Ber. Bunsenges. Phys. Chem. 101, 1870–1881 (1997)

    Article  Google Scholar 

  • Y. Hong, B. Fegley Jr., The sulfur vapor pressure over pyrite on the surface of Venus. Planet. Space Sci. 46, 683–690 (1998)

    Article  ADS  Google Scholar 

  • J.M. Hughes, J. Rakovan, The crystal structure of apatite, Ca5(PO4)3(F, OH, Cl). Rev. Mineral. Geochem. 48, 1–12 (2002)

    Article  Google Scholar 

  • G.R. Hunt, J.W. Salisbury, Visible and near-infrared spectra of minerals and rocks: I silicate minerals. Mod. Geol. 1, 283–300 (1970)

    Google Scholar 

  • M.A. Ivanov, Morphology of the tessera terrain on Venus: implications for the composition of tessera material. Sol. Syst. Res. 35, 1–17 (2001)

    Article  ADS  Google Scholar 

  • M.A. Ivanov, A.T. Basilevsky, Density and morphology of impact craters on tesserae terrain. Geophys. Res. Lett. 20, 2579–2582 (1993)

    Article  ADS  Google Scholar 

  • M.A. Ivanov, J.W. Head III, Geologic map of the Mylitta Fluctus quadrangle (V-61), Venus. U.S. Geological Survey Scientific Investigations Map 2920 (2006)

  • M.A. Ivanov, J.W. Head, The history of volcanism on Venus. Planet. Space Sci. 84, 66–92 (2013)

    Article  ADS  Google Scholar 

  • N.R. Izenberg, R.E. Arvidson, R.J. Phillips, Impact crater degradation on Venusian plains. Geophys. Res. Lett. 21(4), 289–292 (1994). doi:10.1029/94GL00080

    Article  ADS  Google Scholar 

  • N.M. Johnson, B. Fegley Jr., Water on Venus: new insights from tremolite decomposition. Icarus 146, 301–306 (2000)

    Article  ADS  Google Scholar 

  • N.M. Johnson, B. Fegley Jr., Experimental studies of atmosphere-surface interactions on Venus. Adv. Space Res. 29, 233–241 (2002)

    Article  ADS  Google Scholar 

  • N.M. Johnson, B. Fegley Jr., Tremolite decomposition on Venus II. Products, kinetics, and mechanism. Icarus 164, 317–333 (2003a)

    Article  ADS  Google Scholar 

  • N.M. Johnson, B. Fegley Jr., Longevity of fluorine-bearing tremolite on Venus. Icarus 165, 340–348 (2003b)

    Article  ADS  Google Scholar 

  • D. Kappel, G. Arnold, R. Haus, Multi-spectrum retrieval of Venus IR surface emissivity maps from VIRTIS/VES nightside measurements at Themis Regio. Icarus 265, 42–62 (2016)

    Article  ADS  Google Scholar 

  • J.F. Kasting, J.B. Pollack, Loss of water from Venus, I, hydrodynamic escape of hydrogen. Icarus 63, 479–508 (1983)

    Article  ADS  Google Scholar 

  • W.M. Kaula, Constraints on Venus evolution from radiogenic argon. Icarus 139, 32–39 (1999)

    Article  ADS  Google Scholar 

  • K.B. Klose, J.A. Wood, A. Hashimoto, Mineral equilibria and the high radar reflectivity of Venus mountaintops. J. Geophys. Res., Planets 97, 16353–16369 (1992)

    Article  ADS  Google Scholar 

  • E. Kohler, V.F. Chevrier, P. Gavin, N. Johnson, Experimental investigation into the radar anomalies on the surface of Venus. Lunar Planet. Sci. Conf. Abstr. 43, 2749 (2012)

    ADS  Google Scholar 

  • E. Kohler, V.F. Chevrier, P. Gavin, N. Johnson, Experimental stability of tellurium and its implications for the Venusian radar anomalies. Lunar Planet. Sci. Conf. Abstr. 44, 2951 (2013)

    ADS  Google Scholar 

  • E. Kohler et al., Proposed radar reflective minerals tested under Venus surface and atmosphere conditions. Lunar Planet. Sci. Conf. 45, 2321 (2014)

    ADS  Google Scholar 

  • E. Kohler, S. Port, V. Chevrier, N. Johnson, C. Lacy, Radar-reflective minerals investigated under Venus near-surface conditions. Lunar Planet. Sci. Conf. Abstr. 45, 2321 (2015)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, Spatially-resolved high-resolution spectroscopy of Venus 2. Variations of HDO, OCS and SO2 at the cloud tops. Icarus 209, 314–322 (2010). doi:10.1016/j.icarus.2010.05.008

    Article  ADS  Google Scholar 

  • P.S. Kumar, J.W. Head, Geologic map of the Lada Terra quadrangle (V-56). Venus: U.S. Geological Survey Scientific Investigations Map 3249, scale 1:5,000,000 (2013), 11 p. doi:10.3133/sim3249

  • S. Kumar, H.A. Taylor Jr., Deuterium on Venus: model comparisons with Pioneer Venus observations of the predawn bulge atmosphere. Icarus 62, 494–504 (1984)

    Article  ADS  Google Scholar 

  • S.B. Lang, S.A.M. Tofail, A.L. Kholkin, M. Wojtas, M. Gregor, A.A. Gandhi, Y. Wang, S. Bauer, M. Krause, A. Plecenik, Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon. Sci. Rep. 3, 2215 (2013)

    Article  ADS  Google Scholar 

  • B.I. Lazoryak, V.A. Morozov, A.A. Belik, S.Yu. Stefanovich, V.V. Grebenev, I.A. Leonidov, E.B. Mitberge, S.A. Davydov, O.I. Lebedev, G. Van Tendeloo, Ferroelectric phase transition in the whitlockite-type Ca9Fe(PO4)7; crystal structure of the paraelectric phase at 923 K. Solid State Sci. 6, 185–195 (2004)

    Article  ADS  Google Scholar 

  • J. Lecacheux, P. Drossart, P. Laques, F. Deladerriere, F. Colas, Detection of the surface of Venus at 1.0 μm from ground-based observations. Planet. Space Sci. 41, 543–549 (1993)

    Article  ADS  Google Scholar 

  • C.-T.A. Lee, P. Luffi, T. Plank, H. Dalton, W.P. Leeman, Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet. Sci. Lett. 279(1–2), 20–33 (2009)

    Article  ADS  Google Scholar 

  • J.S. Lewis, An estimate of the surface conditions of Venus. Icarus 8, 434–456 (1968)

    Article  ADS  Google Scholar 

  • J.S. Lewis, Venus: atmospheric and lithospheric composition. Earth Planet. Sci. Lett. 10, 73–80 (1970)

    Article  ADS  Google Scholar 

  • K.P. Magee, J.W. Head, The role of rifting in the generation of melt: implications for the origin and evolution of the Lada Terra-Lavinia Planitia region of Venus. J. Geophys. Res. 100, 1527–1552 (1995)

    Article  ADS  Google Scholar 

  • E. Marcq, J.-L. Bertaux, F. Montmessin, D. Belyaev, Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nat. Geosci. 6, 25–28 (2013)

    Article  ADS  Google Scholar 

  • H.R.H. Martin, R. Smithies, J–F. Rapp Moyen, D. Champion, An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1–24 (2005). doi:10.1016/j.lithos.2004.04.048

    Article  ADS  Google Scholar 

  • H. Masursky, E. Eliason, P.G. Ford, G.E. McGill, G.H. Pettengill, G.G. Schaber, G. Schubert, Pioneer-Venus radar results: geology from images and altimetry. J. Geophys. Res. 85, 8232–8260 (1980)

    Article  ADS  Google Scholar 

  • A. Maturilli, J. Helbert, J.M.St. John, J.W. Head III., W.M. Vaughan, M. D’Amore, M. Fottschalk, S. Ferrari, Komatiites as Mercury surface analogues: spectral measurements at PEL. Earth Planet. Sci. Lett. 398, 58–65 (2014)

    Article  ADS  Google Scholar 

  • M.C. McCanta, M.D. Dyar, A.H. Treiman, Alteration of Hawaiian basalts under sulfur-rich conditions: applications to understanding surface-atmosphere interactions on Mars and Venus. Am. Mineral. 99, 291–302 (2014)

    Article  ADS  Google Scholar 

  • W.B. McKinnon, K.J. Zahnle, B.I. Ivanov, H.J. Melosh, Cratering on Venus: models and observations, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tuscon, 1997), pp. 969–1014

    Google Scholar 

  • V.S. Meadows, D. Crisp, Ground-based near-infrared observations of the Venus nightside: the thermal structure and water abundance near the surface. J. Geophys. Res. 101, 4595–4622 (1996)

    Article  ADS  Google Scholar 

  • R.E. Milliken et al., Opaline silica in young deposits on Mars. Geology 36, 847–850 (2008)

    Article  ADS  Google Scholar 

  • H.J. Moore, J.J. Plaut, P.M. Schenk, J.W. Head, An unusual volcano on Venus. J. Geophys. Res. 97, 13479–13493 (1992)

    Article  ADS  Google Scholar 

  • A. Morbidelli et al., Building terrestrial planets. Ann. Rev. Earth Planet. Sci. 40, 251–275 (2012)

    Article  ADS  Google Scholar 

  • R.F. Mueller, Sources of HCl and HF in the atmosphere of Venus. Nature 220, 55–57 (1968)

    Article  ADS  Google Scholar 

  • R.F. Mueller, Planetary problems: origin of Venus atmosphere. Science 163, 1322–1324 (1969)

    Article  ADS  Google Scholar 

  • N. Mueller, J. Helbert, G.L. Hashimoto, C.C.C. Tsang, S. Erard, G. Piccolini, P. Drossart, Venus surface thermal emission at 1 mm in VIRTIS imaging observations: evidence for variation of crust and mantle differentiation conditions. J. Geophys. Res. 113, E00B17 (2008). doi:10.1029/2008JE003118

    Article  Google Scholar 

  • O.V. Nikolayeva, M.A. Ivanov, V.K. Borozdin, Evidence on the crustal dichotomy, in Venus Geology, Geochemistry, and Geophysics, Research Results from the USSR, ed. by V.L. Barsukov, A.T. Basilevsky, V.P. Volkov, V.N. Zharkov (University of Arizona Press, Tucson, 1992), pp. 129–139

    Google Scholar 

  • J.G. O’Rourke, J. Korenaga, Terrestrial planet evolution in the stagnant lid regime: size effects and the formation of self-destabilizing crust. Icarus 221, 1043–1060 (2012). doi:10.1016/j.icarus.2012.10.015

    Article  ADS  Google Scholar 

  • J.G. O’Rourke, A.S. Wolf, B.L. Ehlmann Venus, Interpreting the spatial distribution of volcanically modified craters. Geophys. Res. Lett. 41 8252–8260 (2014). doi:10.1002/2014GL062121

    Article  ADS  Google Scholar 

  • E.M. Parmentier, P.C. Hess, Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys. Res. Lett. 19, 2015–2018 (1992)

    Article  ADS  Google Scholar 

  • B. Pavri, J.W. Head III., K.B. Klose, L. Wilson, Steep-sided domes on Venus: characteristics, geologic setting, and eruption conditions from Magellan data. J. Geophys. Res. 97(E8), 13445–13478 (1992)

    Article  ADS  Google Scholar 

  • G.H. Pettengill, E. Eliason, P.G. Ford, G.B. Loriot, H. Masursky, G.E. McGill, Pioneer-Venus radar results: altimetry and surface properties. J. Geophys. Res. 85, 8261–8270 (1980)

    Article  ADS  Google Scholar 

  • G.H. Pettengill, P.G. Ford, B.D. Chapman, Venus: surface electromagnetic properties. J. Geophys. Res. 93(B12), 14881–14892 (1988)

    Article  ADS  Google Scholar 

  • G.H. Pettengill, P.G. Ford, R.J. Wilt, Venus surface radiothermal emission as observed by Magellan. J. Geophysics Res. 97(E8), 13091–13102 (1992)

    Article  ADS  Google Scholar 

  • G.H. Pettengill, P.G. Ford, R.A. Simpson, Electrical properties of the Venus surface from bistatic radar observations. Science 272, 1628–1631 (1996)

    Article  ADS  Google Scholar 

  • G.H. Pettengill, P.G. Ford, R.A. Simpson, Surface scattering and dielectric properties, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (University of Arizona Press, Tucson, 1997), pp. 527–546

    Google Scholar 

  • F.J. Pettijohn, P.E. Potter, R. Siever, Sand and Sandstone, 2nd edn. (Springer, New York, 1986)

    Google Scholar 

  • R.J. Phillips, M.C. Malin, Tectonics of Venus. Annu. Rev. Earth Planet. Sci. 12, 411–443 (1984)

    Article  ADS  Google Scholar 

  • R.J. Phillips et al., Impact craters and Venus resurfacing history. J. Geophys. Res. 97(E10), 15923–15948 (1992)

    Article  ADS  Google Scholar 

  • C.M. Pieters, J.W. Head, S. Pratt, W. Patterson, J. Garvin, V.L. Barsukov, A.T. Basilevsky et al., The color of the surface of Venus. Science 234, 1379–1383 (1986)

    Article  ADS  Google Scholar 

  • S.T. Port, E. Kohler, V. Chevrier, Bismuth tellurides and sulfides mixtures and their relation to metal frost on Venus. Lunar Planet. Sci. Conf. Abstr. 47, 2245 (2016)

    ADS  Google Scholar 

  • S.T. Port, E. Kohler, V. Chevrier, Bismuth tellurides and sulfide mixtures and their relation to metal frost on Venus. Lunar Planet. Sci. Conf. Abstr. 48, 1081 (2017)

    ADS  Google Scholar 

  • R.G. Prinn, The photochemistry of the atmosphere of Venus, in The Photochemistry of Atmospheres, ed. by J.S. Levine (Academic Press, New York, 1985), pp. 281–336

    Chapter  Google Scholar 

  • B.G. Radoman-Shaw, R.P. Harvey, G.C.C. Costa, N.S. Jacobson, A. Avishai, L.M. Nakley, The stability of calcium silicates and calcium carbonate in the surface of Venus. Lunar Planet. Sci. Conf. Abstr. 48, 2701 (2017)

    ADS  Google Scholar 

  • E.O. Rausch, Dielectric properties of chlorapatite. Doctoral Dissertation, School of Physics, Georgia Institute of Technology, 1976

  • K.M. Roberts, J.E. Guest, J.W. Head, M.G. Lancaster, Mylitta Fluctus, Venus: rift-related, centralized volcanism and the emplacement of large-volume flow units. J. Geophys. Res. 97, 15,991–16,015 (1992)

    Article  ADS  Google Scholar 

  • A.D. Rogers, H. Nekvasil, Feldspathic rocks on Mars: compositional constraints from infrared spectroscopy and possible formation mechanisms. Geophys. Res. Lett. 42(8), 2619–2626 (2015)

    Article  ADS  Google Scholar 

  • I. Romeo, Monte Carlo models of the interaction between impact cratering and volcanic resurfacing on Venus: the effect of the Beta-Atla-Themis anomaly. Planet. Space Sci. 87, 157–172 (2013)

    Article  ADS  Google Scholar 

  • I. Romeo, R. Capote, Tectonic evolution of Ovda Regio: an example of highly deformed continental crust on Venus. Planet. Space Sci. 59, 1428–1445 (2011)

    Article  ADS  Google Scholar 

  • I. Romeo, D.L. Turcotte, Pulsating continents on Venus: an explanation for crustal plateaus and tessera terrains. Earth Planet. Sci. Lett. 276, 85–97 (2008)

    Article  ADS  Google Scholar 

  • G.G. Schaber et al., Geology and distribution of impact craters on Venus: What are they telling us? J. Geophys. Res. 97(E8), 13257–13302 (1992)

    Article  ADS  Google Scholar 

  • L. Schaefer, B. Fegley Jr., Atmospheric chemistry of Venus-like exoplanets. Astrophys. J. 729, 6 (2011). doi:10.1088/0004-637X/729/1/6

    Article  ADS  Google Scholar 

  • A. Seiff, J.T. Schofield, A.J. Kliore, F.W. Taylor, S.S. Limaye, H.E. Revercomb, L.A. Sromovsky, V.V. Kerzhanovich, V.I. Moroz, M.Ya. Marov, Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res. 5, 3–58 (1985)

    Article  ADS  Google Scholar 

  • E.V. Shalygin, W.J. Markiewicz, A.T. Basilevsky, D.V. Titov, N.I. Ignatiev, J.W. Head, Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys. Res. Lett. 42, 4762–4769 (2015). doi:10.1002/2015GL064088

    Article  ADS  Google Scholar 

  • J.G. Shellnutt, Petrological modeling of basaltic rocks from Venus: a case for the presence of silicic rocks. J. Geophys. Res., Planets 118(6), 1350–1364 (2013)

    Article  ADS  Google Scholar 

  • J.G. Shellnutt, Mantle potential temperature estimates of basalt from the surface of Venus. Icarus 277, 98–102 (2016)

    Article  ADS  Google Scholar 

  • M.K. Shepard, R.E. Arvidson, R.A. Brackett, B. Fegley, A ferroelectric model for the low emissivity highlands on Venus. Geophys. Res. Lett. 21(6), 469–472 (1994)

    Article  ADS  Google Scholar 

  • Y.G. Shkuratov, M.A. Kreslavskii, O.V. Nikolaeva, Albedo-color diagram of the Venusian surface and its interpretation. Sol. Syst. Res. 21(2), 152–164 (1987)

    Google Scholar 

  • Y.I. Sidorov, Mathematical simulation of complex natural systems. Geochem. Int. 44(1), 94–107 (2006)

    Article  Google Scholar 

  • R.A. Simpson, G.L. Tyler, B. Häusler, R. Mattei, M. Pätzold, Venus Express bistatic radar: high-elevation anomalous reflectivity. J. Geophys. Res., Planets 114(9), E00B41 (2009)

    Google Scholar 

  • S.E. Smrekar, L. Elkins-Tanton, J.J. Leitner, A. Lenardic, S. Mackwell, L. Moresi, C. Sotin, E.R. Stofan, Tectonic and volcanic evolution of Venus and the role of volatiles: implications for understanding the terrestrial planets, in Exploring Venus as a Terrestrial Planet, ed. by L.W. Esposito et al.. AGU Geophysical Monograph Series, vol. 176 (2007), pp. 45–71

    Chapter  Google Scholar 

  • S.E. Smrekar, E.R. Stofan, N. Mueller, A. Treiman, L. Elkins-Tanton, J. Helbert, G. Piccolini, P. Drossart, Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010). doi:10.1126/science.1186785

    Article  ADS  Google Scholar 

  • S.E. Smrekar, E.R. Stofan, N. Mueller, Venus: surface and interior, in Encyclopedia of the Solar System, ed. by T. Spohn, D. Breuer, T.V. Johnson (Elsevier, Amsterdam, 2014), pp. 323–341

    Chapter  Google Scholar 

  • V.S. Solomatov, L–N. Moresi, Stagnant lid convection on Venus. J. Geophys. Res. 101, 4737–4753 (1996)

    Article  ADS  Google Scholar 

  • S.C. Solomon, A tectonic resurfacing model for Venus. Lunar Planet. Sci. Conf. 24, 1331 (1993)

    ADS  Google Scholar 

  • S.D. Spulber, M.J. Rutherford, The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J. Petrol. 24, 1–25 (1983)

    Article  ADS  Google Scholar 

  • E.R. Stofan et al., Global distribution and characteristics of coronae and related features on Venus: implications for origin and relation to mantle processes. J. Geophys. Res. 97, 13347–13378 (1992)

    Article  ADS  Google Scholar 

  • P.H. Stone, The dynamics of the atmosphere of Venus. J. Atmos. Sci. 32, 1005–1016 (1975)

    Article  ADS  Google Scholar 

  • B.L. Straley, M.S. Gilmore, Mapping and structural analysis of SW Tellus Regio, Venus. Lunar Planet. Sci. Conf. Abstr. 38, 1657 (2007)

    ADS  Google Scholar 

  • R.G. Strom, G.G. Schaber, D.D. Dawson, The global resurfacing of Venus. J. Geophys. Res. 99, 10899–10926 (1994)

    Article  ADS  Google Scholar 

  • T. Sweetser, J. Cameron, G-S. Chen, J. Cutts, R. Gershmann, M.S. Gilmore, J. Hall, V. Kerzhanovich, A. McRonald, E. Nilsen, W. Petrick, D. Rodgers, B. Wilcox, A. Yavrouian, W. Zimmerman, JPL Advanced Projects Design Team, Venus surface sample return: a weighty high-pressure challenge. Adv. Astronaut. Sci. 103(3), 831–844 (2000). Proc. AAS/AIAA Astrodynamics Conf., Aug. 16–19, 1999, Girdwood, Alaska

    Google Scholar 

  • F.W. Taylor, Climate variability on Venus and Titan. Space Sci. Rev. 125, 445–455 (2006)

    Article  ADS  Google Scholar 

  • F.W. Taylor, D. Crisp, B. Bézard, Near-infrared sounding of the lower atmosphere of Venus, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R. Phillips (University of Arizona Press, Tuscon, 1997), pp. 325–351

    Google Scholar 

  • K.L. Tanaka, D.A. Senske, M. Price, R.L. Kirk, Physiography, geomorphic/geologic mapping and stratigraphy of Venus, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher et al.(University of Arizona Press, Tucson, 1997), pp. 667–694

    Google Scholar 

  • A.H. Treiman, Geochemistry of Venus’ surface: current limitations as future opportunities, in Exploring Venus as a Terrestrial Planet, ed. by L.W. Esposito, E.R. Stofan, T.E. Cravens. AGU Monograph Series, vol. 176 (2007), pp. 7–22

    Chapter  Google Scholar 

  • A.H. Treiman, C.C. Allen, Chemical weathering on Venus: preliminary results on the interaction of basalt and CO2. Lunar Planet. Sci. XXV, 1415–1416 (1994)

    ADS  Google Scholar 

  • A.H. Treiman, M.A. Bullock, Mineral reaction buffering of Venus’ atmosphere: a thermochemical constraint and implications for Venus-like planets. Icarus 217, 534–541 (2012)

    Article  ADS  Google Scholar 

  • A.H. Treiman, S.P. Schwenzer, Basalt–atmosphere interaction on Venus: preliminary results on weathering of minerals and bulk rock, in Venus Geochemistry: Progress, Prospects, and New Missions, Abstract #2011 (2009)

    Google Scholar 

  • A. Treiman, E. Harrington, V. Sharpton, Venus’ radar bright highlands: different signatures and materials on Ovda Regio and on Maxwell Montes. Icarus 280, 172–182 (2016)

    Article  ADS  Google Scholar 

  • C.C.C. Tsang, P.G.J. Irwin, F.W. Taylor, C.F. Wilson, A correlated-k model of radiative transfer in the near-infrared windows of Venus. J. Quant. Spectrosc. Radiat. Transf. 109, 1118–1135 (2008)

    Article  ADS  Google Scholar 

  • M.E. Tucker, V.P. Wright, Carbonate Sedimentology (Blackwell, Oxford, 1990), 496 pp.

    Book  Google Scholar 

  • D.L. Turcotte, G. Morein, D. Roberts, B.D. Malamud, Catastrophic resurfacing and episodic subduction on Venus. Icarus 139, 49–54 (1999)

    Article  ADS  Google Scholar 

  • G.L. Tyler et al., Magellan: electrical and physical properties of Venus’ surface. Science 252, 265–270 (1991)

    Article  ADS  Google Scholar 

  • H.C. Urey, The Planets (Yale University Press, New Haven, 1952)

    Google Scholar 

  • VEXAG, Technology Plan (2014). http://www.lpi.usra.edu/vexag/reports/Venus-Technology-Plan-140617.pdf

  • V.P. Volkov, M.Yu. Zolotov, I.L. Khodakovsky, Lithospheric-atmospheric interaction on Venus, in Chemistry and Physics of the Terrestrial Planets, ed. by S.K. Savena (Springer, New York, 1986), pp. 136–190

    Chapter  Google Scholar 

  • M.J. Way et al., Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43, 8376–8383 (2016)

    Article  ADS  Google Scholar 

  • J.J. Wray et al., Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nat. Geosci. 6, 1013–1017 (2013)

    Article  ADS  Google Scholar 

  • C.M. Weitz, A.T. Basilevsky, Magellan observations of the Venera and Vega landing site regions. J. Geophys. Res. 98, 17069–17097 (1993)

    Article  ADS  Google Scholar 

  • M. Weller, M. Duncan, Insight into terrestrial planetary evolution via mantle potential temperatures. Lunar Planet. Sci. Conf. Abstr. 46, 2749 (2015)

    ADS  Google Scholar 

  • M. Whitaker, H. Nekvasil, D.H. Lindsley, Potential magmatic diversity on Mars. Lunar Planet. Sci. 36, 1440 (2005)

    ADS  Google Scholar 

  • J.L. Whitten, B.A. Campbell, Recent volcanic resurfacing of Venusian craters. Geology (2016). doi:10.1130/G37681.1

    Google Scholar 

  • J.A. Wood, Rock weathering on the surface of Venus, in Venus II: Geology, Geophysics, Atmosphere and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (University of Arizona Press, Tucson, 1997), pp. 637–664

    Google Scholar 

  • J.A. Wood, R. Brett, Comment on “The rate of pyrite decomposition on the surface of Venus”. Icarus 128, 472–473 (1997)

    Article  ADS  Google Scholar 

  • Y. Yamanoi, S. Nakashima, M. Katsura, Temperature dependence of reflectance spectra and color values of hematite by in situ, high-temperature visible micro-spectroscopy. Am. Mineral. 94, 90–97 (2009)

    Article  ADS  Google Scholar 

  • M.Y. Zolotov, A model of thermochemical equilibrium in the near-surface atmosphere of Venus. Geochem. Int. 11, 80–100 (1996)

    Google Scholar 

  • M.Yu. Zolotov, Solid planet-atmosphere interactions, in Treatise on Geophysics, vol. 10, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 349–369

    Chapter  Google Scholar 

  • M.Y. Zolotov, I.L. Khodakovsky, Exogenic processes, in The Planet Venus: Atmosphere, Surface, Interior Structure, ed. by Y.L. Barsukov, Y. Volkov (Nauka, Moscow, 1989), pp. 262–290

    Google Scholar 

  • M.Y. Zolotov, B. Fegley Jr., K. Lodders, Hydrous silicates and water on Venus. Icarus 130(2), 475–494 (1997)

    Article  ADS  Google Scholar 

  • M.Y. Zolotov, B. Fegley Jr., K. Lodders, Stability of micas on the surface of Venus. Planet. Space Sci. 47, 245–260 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We appreciate discussions with Justin Filiberto, John Grotzinger, and Bruce Fegley. We thank the reviewers who provided very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Gilmore.

Additional information

Venus III

Edited by Bruno Bézard, Christopher T. Russell, Takehiko Satoh, Suzanne E. Smrekar and Colin F. Wilson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilmore, M., Treiman, A., Helbert, J. et al. Venus Surface Composition Constrained by Observation and Experiment. Space Sci Rev 212, 1511–1540 (2017). https://doi.org/10.1007/s11214-017-0370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0370-8

Keywords

Navigation