Skip to main content
Log in

Multi-protein complexes in eukaryotic gene transcription

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Specific transcription initiation by RNA polymerase II at eukaryotic protein-coding genes involves the cooperative assembly at the core promoter of more than 40 distinct proteins – with a total mass of over 2 MDa – including RNA polymerase II itself and general/basal transcription initiation factors, to form a stable pre-initiation complex (PIC). In vivo, PIC assembly is a major point of regulation by sequence-specific transcription regulators (activators and repressors) and is hindered by the packaging of promoter DNA into nucleosomes and higher order chromatin structures. Genetic and biochemical studies have recently identified a variety of transcription cofactors/co-regulators (coactivators and corepressors) that interact with sequence-specific regulators and/or various components of the general/basal transcription machinery and are essential for regulated transcription. An emerging view from these studies is that regulators must target two types of transcription cofactors: chromatin-modifying/remodeling cofactors and general cofactors that associate with and/or influence the activities of components of the general/basal transcription machinery. The recent biochemical identification and characterization of many different chromatin-modifying and general transcription cofactors has revealed their often complex multi-subunit nature and a previously unsuspected level of structural and functional redundancy. Another emerging theme is the multifunctional nature of chromatin-modifying cofactor complexes that appear to couple gene-specific transcription to other cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abmayr, S.M., Workman, J.L. and Roeder, R.G. 1988. The pseudorabies immediate early [protein stimulates in vitro transcription by facilitating TFIID: promoter interactions. Genes Dev. 2: 542–553.

    Google Scholar 

  • Allard, S., Utley, R.T., Savard, J., Clarke, A., Grant, P., Brandl, C.J., Pillus, L., Workman, J.L. and Cote, J. 1999. EMBO J. 18: 5108–5119.

    Google Scholar 

  • Apone, L.M., Virbasius, C.M., Reese, J.C. and Green, M.R. 1996. Yeast TAF(II)90 is required for cell-cycle progression through G2/M but not for general transcription activation. Genes Dev. 10: 2368–2380.

    Google Scholar 

  • Baldwin, D.A. and Gurley, W.B. 1996. Isolation and characterization of cDNAs encoding transcription factor IIB from Arabidopsis and soybean. Plant J. 10: 561–568.

    Google Scholar 

  • Belotserkovskaya, R., Sterner, D.E., Deng, M., Sayre, M.H, Lieberman, P.M. and Berger, S.L. 2000. Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters. Mol. Cell. Biol. 20: 634–647.

    Google Scholar 

  • Berger, S.L. 2001. The histone modification circus. Science 292: 64–65.

    Google Scholar 

  • Berk, A.J. 2000. TBP-like factors come into focus. Cell 103: 5–8.

    Google Scholar 

  • Bhaumik, S.R. and Green, M.R. 2001. SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes Dev. 15: 1935–1945.

    Google Scholar 

  • Björklund, S., Almouzni, G., Davidson, I., Nightingale, K.P. and Weiss, K. 1999. Global transcription regulators of eukaryotes. Cell 96: 759–767.

    Google Scholar 

  • Brand, M., Yamamoto, K., Staub, A. and Tora, L. 1999. Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J. Biol. Chem. 274: 18285–18289.

    Google Scholar 

  • Brand, M., Moggs, J.G., Oulad-Abdelghani, M., Lejeune, F., Dilworth, F.J., Stevenin, J., Almouzni, G. and Tora, L. 2001. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J. 20: 3187–3196.

    Google Scholar 

  • Brown, C.E., Lechner, T., Howe, L. and Workman, J.L. 2000. The many HATs of transcription coactivators. Trends Biochem. Sci. 25: 15–19.

    Google Scholar 

  • Brzeski, J., Podstolski, W., Olczak, K. and Jerzmanowski, A. 1999. Identification and analysis of the Arabidopsis thaliana BSH gene, a member of the SNF5 gene family. Nucl. Acids Res. 27: 2393–2399.

    Google Scholar 

  • Burke, L.J. and Baniahmad, A. 2000. Co-repressors 2000. FASEB J. 14: 1876–1888.

    Google Scholar 

  • Burke, T.W. and Kadonaga, J.T. 1996. Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev. 10: 711–724.

    Google Scholar 

  • Burke, T.W. and Kadonaga, J.T. 1997. The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes Dev. 11: 3020–3031.

    Google Scholar 

  • Burley, S.K. and Roeder, R.G. 1996. Biochemistry and structural biology of transcription (factor IID (TFIID). Annu. Rev. Biochem. 65: 769–799.

    Google Scholar 

  • Carey, M. 1998. The enhanceosome and transcriptional synergy. Cell 92: 5–8.

    Google Scholar 

  • Castaño, E., Gross, P., Wang, Z., Roeder, R.G. and Oelgeschläger, T. 2000. The C-terminal domain-phosphorylated IIO form of RNA polymerase II is associated with the transcription repressor NC2 (Dr1/DRAP1) and is required for transcription activation in human nuclear extracts. Proc. Natl. Acad. Sci. USA 97: 7184–7189.

    Google Scholar 

  • Chalkley, G.E. and Verrijzer, C.P. 1999. DNA binding site selection by RNA polymerase II TAFs: a TAF(II)250-TAF(II) 150 complex recognizes the initiator. EMBO J. 18: 4835–4845.

    Google Scholar 

  • Chang, W.H. and Kornberg, R.D. 2000. Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell 102: 609–613.

    Google Scholar 

  • Chen, Z. and Manley, J.L. 2000. Robust mRNA transcription in chicken DT40 cells depleted of TAF(II)31 suggests both functional degeneracy and evolutionary divergence. Mol. Cell. Biol. 20: 5064–5076.

    Google Scholar 

  • Chen, J.L., Attardi, L.D., Verrijzer, C.P., Yokomori, K. and Tjian, R. 1994. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79: 93–105.

    Google Scholar 

  • Chen, D., Ma, H., Hong, H., Koh, S.S., Huang, S.M., Schurter, B.T., Aswad, D.W. and Stallcup, M.R. 1999. Regulation of transcription by a protein methyltransferase. Science L 284: 2174–2177.

    Google Scholar 

  • Chi, T. and Carey, M. 1996. Assembly of the isomerized TFIIA-TFIID-TATA ternary complex is necessary and sufficient for gene activation. Genes Dev. 10: 2540–2550.

    Google Scholar 

  • Chi, T., Lieberman, P., Ellwood, K. and Carey, M. 1995. A general mechanism for transcriptional synergy by eukaryotic activators. Nature 377: 254–257.

    Google Scholar 

  • Chi, Y., Huddleston, M.J., Zhang, X., Young, R.A., Annan, R.S., Carr, S.A., Deshaies, R.J. 2001. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev. 15: 1078–1092.

    Google Scholar 

  • Chiang, C.M. and Roeder, R.G. 1995. Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267: 531–536.

    Google Scholar 

  • Cosma, M.P., Tanaka, T. and Nasmyth, K. 1999. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle-and developmentally regulated promoter. Cell 97: 299–311.

    Google Scholar 

  • Cramer, P., Bushnell, D.A. and Kornberg, R.D. 2001. Structural basis of transcription: RNA polymerase II at 2.8 Å resolution. Science 292: 1863–1876.

    Google Scholar 

  • Dantonel, J.C., Murthy, K.G., Manley, J.L. and Tora, L. 1997. Transcription factor TFIID recruits factor CPSF for formation of 3' end of mRNA. Nature 389: 399–402.

    Google Scholar 

  • de Laat, W.L., Jaspers, N.G. and Hoeijmakers, J.H. 1999. Molecular mechanism of nucleotide excision repair. Genes Dev. 13: 768–785.

    Google Scholar 

  • Dikstein, R., Ruppert, S. and Tjian, R. 1996. TAFII250 is a bipartite protein kinase that phosphorylates the base transcription factor RAP74. Cell 84: 781–790.

    Google Scholar 

  • Dotson, M.R., Yuan, C.X., Roeder, R.G., Myers, L.C., Gustafsson, C.M., Jiang, Y.W., Li, Y., Kornberg, R.D. and Asturias, F.J. 2001. Structural organization of yeast and mammalian mediator complexes. Proc. Natl. Acad. Sci. USA 97: 14307–14310.

    Google Scholar 

  • Dudley, A.M., Rougeulle, C. and Winston, F. 1999. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev. 13: 2940–2945.

    Google Scholar 

  • Dvir, A., Conaway, J.W. and Conaway, R.C. 2001. Mechanism of transcription initiation and promoter escape by RNA polymerase II. Curr. Opin. Genet. Dev. 11: 209–214.

    Google Scholar 

  • Eberharter, A., Sterner, D.E., Schieltz, D., Hassan, A., Yates, J.R. 3rd, Berger, S.L., Workman, J.L. 1999. The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae. Mol. Cell. Biol. 19: 6621–6631.

    Google Scholar 

  • Eisenmann, D.M., Arndt, K.M., Ricupero, S.L., Rooney, J.W. and Winston, F. 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6: 1319–1331.

    Google Scholar 

  • Emami, K.H., Jain, A. and Smale, S.T. 1997. Mechanism of synergy between TATA and initiator: synergistic binding of TFIID following a putative TFIIA-induced isomerization. Genes Dev. 11: 3007–3019.

    Google Scholar 

  • Eshed, Y., Baum, S.F. and Bowman J.L. 1999. Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99: 199–209.

    Google Scholar 

  • Flanagan, P.M., Kelleher, R.J. 3rd, Sayre, M.H., Tschochner, H. and Kornberg, R.D. 1991. A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350: 436–438.

    Google Scholar 

  • Finnegan, E.J. 2001. Is plant gene expression regulated globally? Trends Genet. 17: 361–365.

    Google Scholar 

  • Fondell, J.D., Guermah, M., Malik, S. and Roeder, R.G. 1999. Thyroid hormone receptor-associated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box-binding protein-associated factors of TFIID. Proc. Natl. Acad. Sci. USA 96: 1959–1964.

    Google Scholar 

  • Fry, C.J. and Peterson, C.L. 2001. Chromatin remodeling enzymes: who's on first? Curr. Biol. 11: R185–R197.

    Google Scholar 

  • Gangloff, Y.G., Werten, S., Romier, C., Carre, L., Poch, O., Moras, D. and Davidson, I. 2000. Mol. Cell. Biol. 20: 340–351.

    Google Scholar 

  • Gangloff, Y.G., Pointud, J.C, Thuault, S., Carre, L., Romier, C., Muratoglu, S., Brand, M., Tora, L., Couderc, J.L. and Davidson, I. 2001. The TFIID components human TAFII140 and Drosophila BIP2 (TAFII155) are novel metazoan homologues of yeast TAFII47 containing a histone fold and a PHD finger. Mol. Cell. Biol. 21: 5109–5121.

    Google Scholar 

  • Gasch, A., Hoffmann, A., Horikoshi, M., Roeder, R.G. and Chua, N.H. 1990. N.G. 1990. Arabidopsis thaliana contains two genes for TFIID. Nature 346: 390–394.

    Google Scholar 

  • Ge, H. and Roeder, R.G. 1994. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell 78: 513–523.

    Google Scholar 

  • Geiger, J.H., Hahn, S., Lee, S. and Sigler, P.B. 1996. Crystal structure of the yeast TFIIA/TBP/DNA complex. Science 272: 830–836.

    Google Scholar 

  • Geisberg, J.V., Holstege, F.C., Young, R.A. and Struhl, K. 2001. Yeast NC2 associates with the RNA polymerase II preinitiation complex and selectively affects transcription in vivo. Mol. Cell. Biol. 21: 2736–2742.

    Google Scholar 

  • Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A. and Kornberg, R.D. 2001. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292: 1876–1882.

    Google Scholar 

  • Grant, P.A. 2001. A tale of histone modifications. Genome Biol. 2: reviews0003.1-0003.6

  • Grant, P.A., Duggan, L., Cote, J., Roberts, S.M., Brownell, J.E., Candau, R., Ohba, R., Owen-Hughes, T., Allis, C.D., Winston, F., Berger, S.L. and Workman, J.L. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11: 1640–1650.

    Google Scholar 

  • Grant, P.A., Schieltz, D., Pray-Grant, M.G., Steger, D.J., Reese, J.C., Yates, J.R. III and Workman, J.L. 1998a. A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94: 45–53.

    Google Scholar 

  • Grant, P.A., Schieltz, D., Pray-Grant, M.G., Yates, J.R. III and Workman, J.L. 1998b. The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol. Cell 2: 863–867.

    Google Scholar 

  • Green, M.R. 2000. TBP-associated factors (TAFIIS ): multiple, selective transcriptional mediators in common complexes. Trends Biochem. Sci. 25: 59–63.

    Google Scholar 

  • Hampsey, M. 1998. Molecular genetics of the RNA polymerase II general transcription machinery. Microbiol. Mol. Biol. Rev. 62: 465–503.

    Google Scholar 

  • Hansen, S.K. and Tjian, R. 1995. TAFs and TFIIA mediate differential utilization of the tandem Adh promoters. Cell 82: 565–575.

    Google Scholar 

  • Hassan, A.H., Neely, K.E. and Workman, J.L. 2001. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104: 817–827.

    Google Scholar 

  • Hoeijmakers, J.H., Egly,, J.M. and Vermeulen, W. 1996. TFIIH: a key component in multiple DNA transactions. Curr. Opin. Genet. Dev. 6: 26–33.

    Google Scholar 

  • Hoey, T., Dynlacht, B.D., Peterson, M.G., Pugh, B.F. and Tjian, R. 1990. Isolation and characterization of the Drosophila gene encoding the TATA box binding protein, TFIID. Cell 61: 1179–1186.

    Google Scholar 

  • Hoffmann, A., Sinn, E., Yamamoto, T., Wang, J., Roy, A., Horikoshi, M. and Roeder, R.G. 1990. Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature 346: 387–390.

    Google Scholar 

  • Hoffmann, A., Chiang, C.M., Oelgeschläger, T., Xie, X., Burley, S.K., Nakatani, Y. and Roeder, R.G. 1996. A histone octamer-like structure within TFIID. Nature 380: 356–359.

    Google Scholar 

  • Hoffmann, A., Oelgeschläger, T. and Roeder, R.G. 1997. Considerations of Transcriptional control mechanisms: do TFIID-core promoter complexes recapitulate nucleosome-like functions? Proc. Natl. Acad. Sci. USA 94: 8928–8935.

    Google Scholar 

  • Holmes, M.C. and Tjian, R. 2000. Promoter-selective properties of the TBP-related factor TRF1. Science 288: 867–870.

    Google Scholar 

  • Holstege, F.C., Jennings, E.G., Wyrick, J.J., Lee, T.I., Hengartner, C.J., Green, M.R., Golub, T.R., Lander, E.S. and Young, R.A. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717–728.

    Google Scholar 

  • Horikoshi, M., Carey, M.F., Kakidani, H. and Roeder, RG. 1988a. Mechanism of action of a yeast activator: direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions. Cell 54: 665–669.

    Google Scholar 

  • Horikoshi, M., Hai, T., Lin, Y.S., Green, M.R. and Roeder, R.G. 1988b. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54: 1033–1042.

    Google Scholar 

  • Horiuchi, J., Silverman, N., Pina, B., Marcus, G.A. and Guarente, L. 1997. ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3. Mol. Cell. Biol. 17: 3220–3228.

    Google Scholar 

  • Ikeda, K., Halle, J.P., Stelzer, G., Meisterernst, M. and Kawakami, K. 1998. Involvement of negative cofactor NC2 in active repression by zinc finger-homeodomain transcription factor AREB6. Mol. Cell. Biol. 18: 10–18.

    Google Scholar 

  • Ikeda, K., Steger, D.J., Eberharter, A. and Workman, J.L. 1999. Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes. Mol. Cell. Biol. 19: 855–863.

    Google Scholar 

  • Ikura, T., Ogryzko, V.V, Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, J. and Nakatani, Y. 2000. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102: 463–473.

    Google Scholar 

  • Imhof, A., Yang, X.J., Ogryzko, V.V., Nakatani, Y., Wolffe, A.P. and Ge, H. 1997. Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7: 689–692.

    Google Scholar 

  • Jacobson, R.H., Ladurner, A.G., King, D.S., Tjian, R. 2000. Structure and function of a human TAFII250 double bromodomain module. Science 288: 1422–1425.

    Google Scholar 

  • Kaiser, K., Stelzer, G. and Meisterernst, M. 1995. The coactivator p15 (PC4) initiates transcriptional activation during TFIIATFIID-promoter complex formation. EMBO J. 14: 3520–3527.

    Google Scholar 

  • Kamada, K., Shu, F., Chen, H., Malik, S., Stelzer, G., Roeder, R.G., Meisterernst, M., Burley, S.K. 2001. Crystal structure of negative cofactor 2 recognizing the TBP-DNA transcription complex. Cell 106: 71–81.

    Google Scholar 

  • Kang, J.J., Auble, D.T., Ranish, J.A., Hahn, S. 1995. Analysis of the yeast transcription factor TFIIA: distinct functional regions and a polymerase II-specific role in basal and activated transcription. Mol. Cell. Biol. 15: 1234–1243.

    Google Scholar 

  • Kim, Y.J., Bjorklund, S., Li, Y., Sayre, M.H. and Kornberg, R.D. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599–608.

    Google Scholar 

  • Knoepfler, P.S. and Eisenman, R.N. 1999. Sin meets NuRD and other tails of repression. Cell 99: 447–450.

    Google Scholar 

  • Kobayashi, N., Boyer, T.G. and Berk, A.J. 1995. A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol. Cell. Biol. 15: 6465–6473.

    Google Scholar 

  • Koleske, A.J. and Young, R.A. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368: 466–469.

    Google Scholar 

  • Kouzarides, T. 2000. Acetylation: a regulatory modification to riyal phosphorylation? EMBO J. 19: 1176–1179.

    Google Scholar 

  • Kraemer, S.M., Ranallo, R.T., Ogg, R.C. and Stargell, L.A. 2001. TFIIA interacts with TFIID via association with TATA-binding protein and TAF40. Mol. Cell. Biol. 21: 1737–1746.

    Google Scholar 

  • Krebs, J.E., Kuo, M.H., Allis, C.D., Peterson, C.L. 1999. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev. 13: 1412–1421.

    Google Scholar 

  • Kretzschmar, M., Kaiser, K., Lottspeich, F. and Meisterernst, M. 1994. A novel mediator of class II gene transcription with homology to viral immediate-early transcriptional regulators. Cell 78: 525–534.

    Google Scholar 

  • Kuo, M.H., Zhou, J., Jambeck, P., Churchill, M.E. and Allis, C.D. 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12: 627–639.

    Google Scholar 

  • Kuras, L., Kosa, P., Mencia, M. and Struhl, K. 2000. TAF-Containing and TAF-independent forms of transcriptionally active TBP in vivo. Science 288: 1244–1248.

    Google Scholar 

  • Lagrange, T., Kapanidis, A.N., Tang, H., Reinberg D. and Ebright, R.H. 1998. New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev. 12: 34–44.

    Google Scholar 

  • Larkin, R.M., Hagen, G. and Guilfoyle T.J. 1999. Arabidopsis thaliana RNA polymerase II subunits related to yeast and human RPB5. Gene 231: 41–47.

    Google Scholar 

  • Larschan, E. and Winston, F. 2001. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev. 15: 1946–1956.

    Google Scholar 

  • Lee, T.I., Causton, H.C., Holstege, FC., Shen, W.C., Hannett, N., Jennings, E.G., Winston, F., Green, M.R. and Young, R.A. 2000. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405: 701–704.

    Google Scholar 

  • Lemon, B. and Tjian, R. 2000. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14: 2551–2569.

    Google Scholar 

  • Li, Y.F., Le Gourierrec, J., Torki, M., Kim, Y.J., Guerineau, F. and Zhou, D.X. 1999. Characterization and functional analysis of Arabidopsis. TFIIA reveal that the evolutionarily unconserved region of the large subunit has a transcription activation domain. Plant Mol. Biol. 39: 515–525.

    Google Scholar 

  • Li, X.Y., Bhaumik, S.R. and Green, M.R. 2000. Distinct classes of yeast promoters revealed by differential TAF recruitment. Science 288: 1242–1244.

    Google Scholar 

  • Lieberman, P.M. and Berk, A.J. 1994. A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA-promoter DNA complex formation. Genes Dev. 8: 995–1006.

    Google Scholar 

  • Liu, Y., Ranish, J.A., Aebersold, R. and Hahn, S. 2001. Yeast nuclear extract contains two major forms of RNA polymerase II mediator complexes. J. Biol. Chem. 276: 7169–7175.

    Google Scholar 

  • Lorch, Y., Beve, J., Gustafsson, C.M., Myers, L.C. and Kornberg, R.D. 2000. Mediator-nucleosome interaction. Mol. Cell 6: 197–201.

    Google Scholar 

  • Malik, S. and Roeder, R.G. 2000. Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem. Sci. 25: 277–283.

    Google Scholar 

  • Malik, S., Guermah, M. and Roeder, R.G. 1998. A dynamic model for PC4 coactivator function in RNA polymerase II transcription. Proc. Natl. Acad. Sci. USA 95: 2192–2197.

    Google Scholar 

  • Malik, S., Gu, W., Wu, W., Qin, J. and Roeder, R.G. 2000. The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol. Cell 5: 753–760.

    Google Scholar 

  • Martinez, E., Chiang, C.M., Ge, H. and Roeder, R.G. 1994. TATA-binding protein-associated factor(s) in TFIID function through the initiator to direct basal transcription from a TATA-less class II promoter. EMBO J. 13: 3115–3126.

    Google Scholar 

  • Martinez, E., Zhou, Q., L'Etoile, N.D., Oelgeschläger, T., Berk, A.J. and Roeder, R.G. 1995. Core promoter-specific function of a mutant transcription factor TFIID defective in TATA-box binding. Proc. Natl. Acad. Sci. USA 92: 11864–11868.

    Google Scholar 

  • Martinez, E., Ge, H., Tao, Y., Yuan, C.X., Palhan, V. and Roeder, R.G. 1998a. Novel cofactors and TFIIA mediate functional core promoter selectivity by the human TAFII150-containing TFIID complex. Mol. Cell. Biol. 18: 6571–6583.

    Google Scholar 

  • Martinez, E., Kundu, T.K., Fu, J. and Roeder, R.G. 1998b. A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J. Biol. Chem. 273: 23781–23785.

    Google Scholar 

  • Martinez, E., Palhan, V.B., Tjernberg, A., Lymar, E.S., Gamper, A.M., Kundu, T.K., Chait, B.T. and Roeder, R.G. 2001. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol. Cell. Biol. 21: 6782–6795.

    Google Scholar 

  • Matangkasombut, O., Buratowski, R.M., Swilling, N.W. and Buratowski, S. 2000. Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev. 14: 951–962.

    Google Scholar 

  • Merika, M. and Thanos, D. 2001. Enhanceosomes. Curr. Opin. Genet. Dev. 11: 205–208.

    Google Scholar 

  • Metzger, D., Scheer, E., Soldatov, A. and Tora, L. 1999. Mammalian TAF(II)30 is required for cell cycle progression and specific cellular differentiation programmes. L EMBO J. 18: 4823–4834.

    Google Scholar 

  • Mizuguchi, G., Vassilev, A., Tsukiyama, T., Nakatani, Y. and Wu, C. 2001. ATP-dependent nucleosome remodeling and histone hyperacetylation synergistically facilitate transcription of chromatin. J. Biol. Chem. 276: 14773–14783

    Google Scholar 

  • Mizzen, C.A., Yang, X.J., Kokubo, T., Brownell, J.E., Bannister, A.J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S.L., Kouzarides, T., Nakatani, Y. and Allis, C.D. 1996. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261–1270.

    Google Scholar 

  • Moqtaderi, Z., Bai, Y., Poon, D., Weil, P.A. and Struhl, K. 1996. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383: 188–191.

    Google Scholar 

  • Murfett, J., Wang, X.J., Hagen, G. and Guilfoyle, T.J. 2001. Identification of arabidopsis histone deacetylase hda6 mutants that affect transgene expression. Plant Cell 13: 1047–1061.

    Google Scholar 

  • Myers, L.C. and Kornberg, R.D. 2000. Mediator of transcriptional regulation. Annu. Rev. Biochem. 69: 729–749.

    Google Scholar 

  • Näär, A.M., Beaurang, P.A., Robinson, K.M., Oliner, J.D., Avizonis, D., Scheek, S., Zwicker, J., Kadonaga, J.T. and Tjian, R. 1998. Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev. 12: 3020–3031.

    Google Scholar 

  • Näär, A.M., Lemon, B.D., Tjian, R. 2001. Transcriptional coactivator complexes. Annu. Rev. Biochem. 70: 475–501.

    Google Scholar 

  • Ng, H.H. and Bird, A. 2000. Histone deacetylases: silencers for hire. Trends Biochem. Sci. 25: 121–126.

    Google Scholar 

  • Nielsen, S.J., Schneider, R., Bauer, V.M., Bannister, A.J., Morrison, A., O'Carroll, D., Firestein, R., Cleary, M., Jenuwein, T., Herrera, R.E. and Kouzarides, T. 2001. Rb targets histone H3 methylation and HP1 to promoters. Nature 412: 561–565.

    Google Scholar 

  • Nikolov, D.B., Chen, H., Halay, E.D., Usheva, A.A., Hisatake, K., Lee, D.K., Roeder, R.G., Burley, S.K. 1995. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377: 119–128.

    Google Scholar 

  • Nogales, E. 2000. Recent structural insights into transcription preinitiation complexes. J. Cell. Sci. 113: 4391–4397.

    Google Scholar 

  • O'Brien, T. and Tjian, R. 2000. Different functional domains of TAFII250 modulate expression of distinct subsets of mammalian genes. Proc. Natl. Acad. Sci. USA 97: 2456–2461.

    Google Scholar 

  • Oelgeschläger, T., Chiang, C.M. and Roeder, R.G. 1996. Topology and reorganization of human TFIID-promoter complex. Nature 382: 735–738.

    Google Scholar 

  • Oelgeschläger T., Tao, Y., Kang, Y.K. and Roeder, R.G. 1998. Transcription activation via enhanced preinitiation complex assembly in a human cell-free system lacking TAFII S. Mol. Cell. 1: 925–9

    Google Scholar 

  • Ogas, J., Kaufmann, S., Henderson, J. and Somerville, C. 1999. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc. Natl. Acad. Sci. USA 96: 13839–13844.

    Google Scholar 

  • Ogryzko, V.V., Kotani, T., Zhang, X., Schiltz, R.L., Howard, T., Yang, X.J., Howard, B.H., Qin, J. and Nakatani, Y. 1998. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94: 35–44.

    Google Scholar 

  • Orphanides, G., Lagrange T. and Reinberg, D. 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10: 2657–2683.

    Google Scholar 

  • Ozer, J., Moore, P.A., Bolden, A.H., Lee, A., Rosen, C.A. and Lieberman, P.M. 1994. Molecular cloning of the small (gamma) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev. 8: 2324–2335.

    Google Scholar 

  • Ozer, J., Mitsouras, K., Zerby, D., Carey, M. and Lieberman, P.M. 1998a. Transcription factor IIA derepresses TATA-binding protein (TBP)-associated factor inhibition of TBP-DNA binding. J. Biol. Chem. 273: 14293–14300.

    Google Scholar 

  • Ozer, J., Lezina, L.E., Ewing, J., Audi S. and Lieberman, P.M. 1998b. Association of transcription factor IIA with TATA binding protein is required for transcriptional activation of a subset of promoters and cell cycle progression in Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 2559–2570.

    Google Scholar 

  • Ozer, J., Moore, P.A. and Lieberman, P.M. 2000. A testis-specific transcription factor IIA (TFIIAtau) stimulates TATA-binding protein-DNA binding and transcription activation. J. Biol. Chem. 275: 122–128.

    Google Scholar 

  • Park, J.M., Gim, B.S., Kim, J.M., Yoon, J.H., Kim, H.S., Kang, J.G. and Kim, Y.J. 2001. Drosophila Mediator complex is broadly utilized by diverse gene-specific transcription factors at different types of core promoters. Mol. Cell. Biol. 21: 2312–2323.

    Google Scholar 

  • Patikoglou, G. and Burley, S.K. 1997. Eukaryotic transcription factor-DNA complexes. Annu. Rev. Biomol. Struct. 26: 289–325.

    Google Scholar 

  • Pham, A.D. and Sauer, F. 2000. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289: 2357–2360.

    Google Scholar 

  • Pugh, B.F. and Tjian, R. 1990. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61: 1187–1197.

    Google Scholar 

  • Pugh, B.F. and Tjian, R. 1991. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 5: 1935–1945.

    Google Scholar 

  • Roeder, R.G. 1996. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21: 327–335.

    Google Scholar 

  • Roeder, R.G. 1998. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. Cold Spring Harbor Symp. Quant. Biol. 63: 201–218.

    Google Scholar 

  • Roth, S.Y., Denu, J.M. and Allis, C.D. 2001. Histone acetyltransferases. Annu. Rev. Biochem. 70: 81–120.

    Google Scholar 

  • Sawadogo, M. and Roeder, R.G. 1985. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43: 165–175.

    Google Scholar 

  • Sauer, F., Hansen, S.K. and Tjian, R. 1995a. Multiple TAFIIs directing synergistic activation of transcription. Science 270: 1783–1788.

    Google Scholar 

  • Sauer, F., Hansen, S.K. and Tjian, R. 1995b. DNA template and activator-coactivator requirements for transcriptional synergism by Drosophila bicoid. Science 270: 1825–1828.

    Google Scholar 

  • Schultz, P., Fribourg, S., Poterszman, A., Mallouh, V., Moras, D. and Egly, J.M. 2000. Molecular structure of human TFIIH. Cell 102: 599–607.

    Google Scholar 

  • Selleck, W., Howley, R., Fang, Q., Podolny, V., Fried, M.G., Buratowski, S. and Tan, S. 2001. A histone fold TAF octamer within the yeast TFIID transcriptional coactivator. Nat. Struct. Biol. 8: 695–700.

    Google Scholar 

  • Shen, W.C. and Green, M.R. 1997. Yeast TAF(II)145 functions as a core promoter selectivity factor, not a general coactivator. Cell 90: 615–624.

    Google Scholar 

  • Shen, X., Mizuguchi, G., Hamiche, A. and Wu, C. 2000. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406: 541–544.

    Google Scholar 

  • Shykind, B.M., Kim, J. and Sharp, P.A. 1995. Activation of the TFIID-TFIIA complex with HMG-2. Genes Dev. 9: 1354–1365.

    Google Scholar 

  • Shykind, B.M., Kim, J., Stewart, L., Champoux, J.J. and Sharp, P.A. 1997. Topoisomerase I enhances TFIID-TFIIA complex assembly during activation of transcription. Genes Dev. 11: 397–407.

    Google Scholar 

  • Smale, S.T. 1997. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim. Biophys. Acta 1351: 73–88.

    Google Scholar 

  • Smith, R.L. and Johnson, A.D. 2000. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem. Sci. 25: 325–330.

    Google Scholar 

  • Solow, S., Salunek, M., Ryan, R. and Lieberman, P.M. 2001. TAF(II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J. Biol. Chem. 276: 15886–15892.

    Google Scholar 

  • Sterner, D.E. and Berger, S.L. 2000. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64: 435–459.

    Google Scholar 

  • Sterner, D.E., Grant, P.A., Roberts, S.M., Duggan, L.J., Belotserkovskaya, R., Pacella, L.A., Winston, F., Workman, J.L. and Berger, S.L. 1999. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19: 86–98.

    Google Scholar 

  • Stockinger, E.J., Mao, Y., Regier, M.K., Triezenberg, S.J. and Thomashow, M.F. 2001. TranscriPtional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucl. Acids Res. 29: 1524–1533.

    Google Scholar 

  • Strahl, B.D. and Allis, C.D. 2000. The language of covalent histone modifications. Nature 403: 41–45.

    Google Scholar 

  • Sun, X., Ma, D., Sheldon, M., Yeung, K. and Reinberg, D. 1994. Reconstitution of human TFIIA activity from recombinant polypeptides: a role in TFIID-mediated transcription. Genes Dev. 8: 2336–2348.

    Google Scholar 

  • Tan, S., Hunziker, Y., Sargent, D.F. and Richmond, T.J. 1996. Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381: 127–1251.

    Google Scholar 

  • Tansey, W.P. 2001. Transcriptional activation: risky business. Genes Dev. 15: 1045–1050.

    Google Scholar 

  • Thompson, C.M. and Young, R.A. 1995. General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl. Acad. Sci. USA 92: 4587–4590.

    Google Scholar 

  • Thompson, C.M., Koleske, A.J., Chao, D.M. and Young, R.A. 1993. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73: 1361–1375.

    Google Scholar 

  • Tsai, F.T. and Sigler, P.B. 2000. Structural basis of preinitiation complex assembly on human pol II promoters. EMBO J. 19: 25–36.

    Google Scholar 

  • Upadhyaya, A.B., Lee, S.H. and DeJong, J. 1999. Identification of a general transcription factor TFIIA?/? homolog selectively expressed in testis. J. Biol. Chem. 274: 18040–18048.

    Google Scholar 

  • Utley, R.T., Ikeda, K., Grant, P.A., Cote, J., Steger, D.J., Eberharter, A., John, S. and Workman, J.L. 1998. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394: 498–502.

    Google Scholar 

  • Verbsky, M.L. and Richards, E.J. 2001. Chromatin remodeling in plants. Curr. Opin. Plant Biol. 4: 494–500.

    Google Scholar 

  • Verrijzer, C.P. and Tjian, R. 1996. TAFs mediate transcriptional activation and promoter selectivity. Trends Biochem. Sci. 21: 338–339.

    Google Scholar 

  • Vignali, M., Hassan, A.H., Neely, K.E. and Workman, J.L. 2000. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 20: 1899–1910.

    Google Scholar 

  • Walker, S.S., Reese, J.C., Apone, L.M. and Green, M.R. 1996. Transcription activation in cells lacking TAFIIs. Nature 383: 185–188.

    Google Scholar 

  • Wang, G., Cantin, G.T., Stevens, J.L. and Berk, A.J. 2001a. Characterization of mediator complexes from HeLa cell nuclear extract. Mol. Cello Biol. 21: 4604–4613.

    Google Scholar 

  • Wang, H., Huang, Z.Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B.D., Briggs, S.D., Allis, C.D., Wang, J., Tempst, P. and Zhang, Y. 2001b. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293: 853–857.

    Google Scholar 

  • Wang, L., Liu, L. and Berger, S.L. 1998. Critical residues for histone acetylation by r Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12: 640–653

    Google Scholar 

  • Wang, W., Gralla, J.D. and Carey, M. 1992. The acidic activator GAL4-AH can stimulate polymerase II transcription by promoting assembly of a closed complex requiring TFIID Land TFIIA. Genes Dev. 6: 1716–1727.

    Google Scholar 

  • Wieczorek, E., Brand, M., Jacq, X., Tora, L. 1998. Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II. Nature 393: 187–191.

    Google Scholar 

  • Willy, P.J., Kobayashi, R. and Kadonaga, J.T. 2000. A basal transcription factor that activates or represses transcription. Science 290: 982–985.

    Google Scholar 

  • Workman, J.L. and Kingston R.E. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67: 545–579.

    Google Scholar 

  • Workman, J.L. and Roeder, R.G. 1987. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51: 613–622.

    Google Scholar 

  • Workman, J.L., Abmayr, S.M., Cromlish, W.A. and Roeder, R.G. 1988. Transcriptional regulation by the immediate early protein of pseudorabies virus during in vitro nucleosome assembly. Cell 55: 211–219.

    Google Scholar 

  • Wu, S.Y., Kershnar, E. and Chiang, C.M. 1998. TAFII-independent activation mediated by human TBP in the presence of the positive cofactor PC4. EMBO J. 17: 4478–4490.

    Google Scholar 

  • Wu, C.H., Madabusi, L., Nishioka, H., Emanuel, P., Sypes, M., Arkhipova, I. and Gilmour, D.S. 2001. Analysis of core promoter sequences located downstream from the TATA element in the hsp70 promoter from Drosophila melanogaster. Mol. Cell. Biol. 21: 1593–1602.

    Google Scholar 

  • Xie, X., Kokubo, T., Cohen, S.L., Mirza, U.A., Hoffmann, A., Chait, B.T., Roeder, R.G., Nakatani, Y. and Burley, S.K. 1996. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380: 316–322.

    Google Scholar 

  • Xu, W., Edmondson, D.G. and Roth, S.Y. 1998. Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol. Cell. Biol. 18: 5659–5669.

    Google Scholar 

  • Xu,W., Edmondson, D.G., Evrard, Y.A., Wakamiya, M., Behringer, R.R. and Roth, S,Y. 2000. Loss of Gcn512 leads to increased apoptosis and mesodermal defects during mouse development. Nat. Genet. 26: 229–232.

    Google Scholar 

  • Yamauchi, T., Yamauchi, J., Kuwata, T., Tamura, T., Yamashita, T., Bae, N., Westphal, H., Ozato, K. and Nakatani, Y. 2000. Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc. Natl. Acad. Sci. USA 97: 11303–11306.

    Google Scholar 

  • Yang, X.J., Ogryzko, V.V., Nishikawa, J., Howard, B.H. and Nakatani, Y. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382: 319–324.

    Google Scholar 

  • Yudkovsky, N., Ranish, J.A. and Hahn, S. 2000. A transcription reinitiation intermediate that is stabilized by activator. Nature 408: 225–229.

    Google Scholar 

  • Zawel, L., Kumar, K.P. and Reinberg, D. 1995. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev. 9: 1479–1490.

    Google Scholar 

  • Zhou, Q., Lieberman, P.M., Boyer, T.G. and Berk, A.J. 1992. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev. 6: 1964–1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, E. Multi-protein complexes in eukaryotic gene transcription. Plant Mol Biol 50, 925–947 (2002). https://doi.org/10.1023/A:1021258713850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021258713850

Keywords

Navigation