Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An ultraslow-spreading class of ocean ridge

Abstract

New investigations of the Southwest Indian and Arctic ridges reveal an ultraslow-spreading class of ocean ridge that is characterized by intermittent volcanism and a lack of transform faults. We find that the mantle beneath such ridges is emplaced continuously to the seafloor over large regions. The differences between ultraslow- and slow-spreading ridges are as great as those between slow- and fast-spreading ridges. The ultraslow-spreading ridges usually form at full spreading rates less than about 12 mm yr-1, though their characteristics are commonly found at rates up to approximately 20 mm yr-1. The ultraslow-spreading ridges consist of linked magmatic and amagmatic accretionary ridge segments. The amagmatic segments are a previously unrecognized class of accretionary plate boundary structure and can assume any orientation, with angles relative to the spreading direction ranging from orthogonal to acute. These amagmatic segments sometimes coexist with magmatic ridge segments for millions of years to form stable plate boundaries, or may displace or be displaced by transforms and magmatic ridge segments as spreading rate, mantle thermal structure and ridge geometry change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ridge properties as a function of spreading rate.
Figure 2: SWIR bathymetry from 9° to 25°E.
Figure 3: SWIR oblique supersegment bathymetric, mantle Bouguer and magnetization maps.
Figure 4: Arctic ridge system modified from the IBCAO bathymetry51 showing its subdivisions including the Gakkel ridge and the Knipovitch ridge (see text).
Figure 5: SWIR axial region between the Atlantis II and Gauss fracture zones (modified from ref. 24).

Similar content being viewed by others

References

  1. Solomon, S. in Drilling the Oceanic Lower Crust and Mantle, JOI/USSAC Workshop Report (ed. Dick, H. J. B.) 73–74 (Woods Hole Oceanographic Institution, Woods Hole, MA, 1989)

    Google Scholar 

  2. Small, C. in Faulting and Magmatism at Mid-Ocean Ridges (eds Buck, W., Delaney, P. T., Karson, J. A. & Lagabrielle, Y.) 1–26 (American Geophysical Union, Washington DC, 1998)

    Google Scholar 

  3. Macdonald, K. C. in The Western North Atlantic Region (eds Vogt, P. & Tucholke, B.) 51–68 (Geological Society of America, Boulder, CO, 1986)

    Google Scholar 

  4. Heezen, B. C. The rift in the ocean floor. Sci. Am. 203, 99–106 (1960)

    Article  Google Scholar 

  5. Fornari, D. J., Haymon, R. M., Perfit, M. R. & Edwards, M. H. Geological characteristics and evolution of the axial zone on fast spreading mid-ocean ridges: formation of an axial summit trough along the East Pacific Rise, 9°-10°N 1998. J. Geophys. Res. 103, 9827–9855 (1998)

    Article  ADS  Google Scholar 

  6. Small, C. & Sandwell, D. T. An abrupt change in ridge axis gravity with spreading rate. J. Geophys. Res. 94, 17383–17317 (1989)

    Article  ADS  Google Scholar 

  7. Cochran, J. R. Systematic variation of axial morphology along the Southeast Indian Ridge. Eos 260, 88 (1991)

    Google Scholar 

  8. Phipps Morgan, J. & Chen, Y. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature 364, 706–708 (1993)

    Article  ADS  Google Scholar 

  9. Reid, I. & Jackson, H. R. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res. 5, 165–172 (1981)

    Google Scholar 

  10. Jackson, H. R., Reid, I. & Falconer, R. K. H. Crustal structure near the Arctic mid-ocean ridge. J. Geophys. Res. 87, 1773–1783 (1982)

    Article  ADS  Google Scholar 

  11. Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 121, 435–439 (1994)

    Article  ADS  CAS  Google Scholar 

  12. White, R. S., Minshull, T. A., Bickle, M. J. & Robinson, C. J. Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and Geophysical data. J. Petrol. 42, 1171–1196 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Dick, H. J. B., Georgen, J. E., le Roex, A. P., Lin, J. & Madsen, J. A. The influence of ridge geometry on mantle melting at an ultra-slow spreading ridge. Eos F919 (1998)

  14. Georgen, J. E., Lin, J. & Dick, H. J. B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effect of transform offsets. Earth Planet. Sci. Lett. 187, 283–300 (2002)

    Article  ADS  Google Scholar 

  15. Cochran, J. R., Kurras, G. J., Edwards, M. H. & Coakley, B. J. The Gakkel Ridge: Bathymetry, gravity anomalies and crustal accretion at extremely slow spreading rates. J. Geophys. Res. 2003, doi:10/1029/2002JB001830 (2002)

  16. Macdonald, K. C., Scheirer, D. S., Carbotte, S. & Fox, P. J. It's only topography: Parts 1 & 2. GSA Today 3, 1–35 (1993)

    Google Scholar 

  17. Kuo, B.-Y. & Forsyth, D. W. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5°S: Upwelling centers and variations in crustal thickness. Mar. Geophys. Res. 10, 205–232 (1988)

    Article  Google Scholar 

  18. Lin, J. & Phipps Morgan, J. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophys. Res. Lett. 19, 13–16 (1992)

    Article  ADS  Google Scholar 

  19. Tolstoy, M., Harding, A. J. & Orcutt, J. A. Crustal thickness on the Mid-Atlantic Ridge: Bull's-eye gravity anomalies and focused accretion. Science 262, 726–729 (1993)

    Article  ADS  CAS  Google Scholar 

  20. Magde, L. S. & Sparks, D. W. Three-dimensional mantle upwelling, melt generation, and melt migration beneath segment slow spreading ridges. J. Geophys. Res. 102, 20571–20583 (1997)

    Article  ADS  Google Scholar 

  21. Dauteuil, O. & Brun, J. P. Oblique rifting in a slow spreading ridge. Nature 361, 145–148 (1993)

    Article  ADS  Google Scholar 

  22. Clay, K. R. & White, M. J. Analogue modelling of orthogonal and oblique rifting. Mar. Petrol. Geol. 12, 137–151 (1995)

    Article  Google Scholar 

  23. Jokat, W. et al. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature 423, 962–965 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Sauter, D. et al. The Southwest Indian Ridge between 49°15′E and 57°E: focused accretion and magma redistribution. Earth Planet. Sci. Lett. 192, 303–317 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Grindlay, N. R., Madsen, J. A., Rommevaux-Jestin, C. & Sclater, J. A different pattern of ridge segmentation and mantle Bouguer gravity anomalies along the ultra-slow spreading Southwest Indian Ridge (15°30′E to 25°E). Earth Planet. Sci. Lett. 161, 243–253 (1998)

    Article  ADS  CAS  Google Scholar 

  26. le Roex, A. P., Dick, H. J. B. & Watkins, R. T. Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11°53′E to 14°38′E. Contrib. Mineral. Petrol. 110, 253–268 (1992)

    Article  ADS  CAS  Google Scholar 

  27. DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Current plate motions. Geophys. J. Int. 101, 425–478 (1990)

    Article  ADS  Google Scholar 

  28. DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 21, 2191–2194 (1994)

    Article  ADS  Google Scholar 

  29. Okino, K. et al. Preliminary analysis of the Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system. Earth Planet. Sci. Lett. 202, 279–288 (2002)

    Article  ADS  Google Scholar 

  30. Cochran, J. R. & Coakley, B. J. Morphology and segmentation of the Gakkel Ridge, Arctic Ocean, from SCICEX data. Eos 79, F854 (1998)

    Google Scholar 

  31. Brozena, J. M. et al. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development. Geology 31, 825–828 (2003)

    Article  ADS  Google Scholar 

  32. Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean. Nature 423, 956–961 (2003)

    Article  ADS  CAS  Google Scholar 

  33. Jackson, H. R. & Reid, I. Oceanic magnetic anomaly amplitudes: variation with sea-floor spreading rate and possible implications. Earth Planet. Sci. Lett. 63, 368–378 (1983)

    Article  ADS  Google Scholar 

  34. Feden, R. H., Vogt, P. R. & Fleming, H. S. Magnetic and bathymetric evidence for the “Yermak Hot Spot” northwest of Svalbard in the Arctic Basin. Earth Planet. Sci. Lett. 44, 18–38 (1979)

    Article  ADS  Google Scholar 

  35. Duckworth, G. L., Baggeroer, A. B. & Jackson, H. R. Crustal structure measurements near FRAMII in the Pole Abyssal Plain. Tectonophysics 89, 172–215 (1982)

    Article  ADS  Google Scholar 

  36. Michael, P. J. et al. The Arctic Mid-Ocean Ridge Expedition—AMORE 2001—Seafloor spreading at the top of the world. Eos 82, F1097 (2001)

    Google Scholar 

  37. Edwards, M. H. et al. Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge. Nature 409, 808–812 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Coakley, B. J. & Cochran, J. R. Gravity evidence of very thin crust at the Gakkel Ridge (Arctic Ocean). Earth Planet. Sci. Lett. 162, 81–95 (1998)

    Article  ADS  CAS  Google Scholar 

  39. Vogt, P., Taylor, P. T., Kovacs, L. C. & Johnson, G. L. Detailed aeromagnetic investigation of the Arctic Basin. J. Geophys. Res. 84, 1071–1089 (1989)

    Article  ADS  Google Scholar 

  40. Standish, J., Dick, H., le Roex, A., Melson, W. & O'Hearn, T. Major and trace element geochemistry: Ultra-slow spreading SWIR (9°–25° E). Eos 83,F1331 (2002)

    Google Scholar 

  41. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987)

    Article  ADS  CAS  Google Scholar 

  42. Salters, V. J. M. & Dick, H. J. B. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418, 68–72 (2002)

    Article  ADS  CAS  Google Scholar 

  43. Mahoney, J., Le Roex, A. P., Peng, Z., Fisher, R. L. & Natland, J. H. Southwestern limits of Indian Ocean ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt: isotope systematics of the Central Southwest Indian Ridge (17°-50°E). J. Geophys. Res. 97, 19771–19790 (1992)

    Article  ADS  CAS  Google Scholar 

  44. Pertermann, M. & Hirschmann, M. M. Anhydrous partial melting experiments on MORB-like Éclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J. Petrol. 44, 2173–2201 (2003)

    Article  ADS  CAS  Google Scholar 

  45. Dick, H. J. B. & Natland, J. Late stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In Scientific Results (eds Gillis, K., Mevel, C. & Allan, J.) 103–134 (Ocean Drilling Program, Texas A&M University, College Station, TX, 1996)

    Google Scholar 

  46. Sandwell, D. T. & Smith, W. H. F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. 102, 10039–10054 (1997)

    Article  ADS  Google Scholar 

  47. Poliakov, A. N. B. & Buck W. R. in Faulting and Magmatism at Mid-Ocean Ridges (eds Buck, W. R., Delaney, P. T., Karson, J. A. & Lagabrielle, Y.) 305–324 (American Geophysical Union, Washington DC, 1998)

    Google Scholar 

  48. Phipps Morgan, J., Parmentier, E. M. & Lin, J. Mechanisms for the origin of mid-ocean ridge axial topography; implications for the thermal and mechanical structure of accreting plate boundaries. J. Geophys. Res. 92, 12823–12836 (1987)

    Article  ADS  Google Scholar 

  49. Sotin, C. & Parmentier, E. M. Dynamical consequences of compositional and thermal density stratification beneath spreading centers. Geophys. Res. Lett. 16, 368–377 (1989)

    Article  Google Scholar 

  50. Forsyth, D. W. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Phipps Morgan, J., Blackman, D. K. & Sinton, J. M.) 1–66 (American Geophysical Union, Washington DC, 1992)

    Google Scholar 

  51. Macnab, R. & Jakobsson, M. The International bathymetric chart of the Arctic Ocean (IBCAO): An improved morphological framework for oceanographic investigations. Geophys. Res. Abstr. 5, 10909 (2003)

    Google Scholar 

Download references

Acknowledgements

The National Science Foundation funded this work. We thank the crew and scientific party of RV Knorr Voyage 162, Legs 7-9 and the AMORE scientific party for discussions, particularly P. Michael, G. Kurras, C. Langmuir, J. Snow and W. Jokat. We also wish to acknowledge J. Standish for coordinating rock description on both cruises. J. P. Morgan, R. Buck, G. Hirth and J. Standish provided reviews of the manuscript, and R. Searle, and J. Cann provided us with additional insights into ridge tectonics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry J. B. Dick.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dick, H., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003). https://doi.org/10.1038/nature02128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02128

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing