Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metaplasia and transdifferentiation: from pure biology to the clinic

Key Points

  • 'Metaplasia' is defined as the conversion of one tissue type to another, whereas 'transdifferentiation' is defined as the conversion of one differentiated cell type to another. Despite scepticism arising from exaggerated claims about the reprogramming of bone-marrow stem cells, these phenomena do occur on occasion.

  • Long standing examples are the phenomena of transdetermination in Drosophila melanogaster and the types of epithelial metaplasia in which patches of one epithelium are found in the midst of another.

  • The cause of such events is the alteration of expression of the transcription factors that encode the specification of the tissue types during embryonic development. The alteration can arise from somatic mutation, epigenetic change or change of regulation by an extracellular signal. Metaplasias are associated with tissue damage because the process of regeneration gives small foci of ectopic tissue the opportunity to grow into large patches.

  • Many metaplasias are understood in molecular detail, and the following are described: transdetermination of leg to wing in D. melanogaster; intestinal metaplasia in human and mouse; vaginal adenosis in women; switching of B lymphocytes to macrophages; transformation of exocrine pancreas to hepatocytes; and Wolffian regeneration of the lens from the iris in newts.

  • The nature of the differentiated state, and that of the commitment of undifferentiated stem and progenitor cell populations remains poorly understood, although it is likely that chromatin structure is involved.

  • Therapeutic applications can be imagined in which the expression of relevant transcription factors is modified. These could potentially be used to inhibit the formation of harmful metaplasias, such as those that predispose individuals to cancer. They could also be used to generate desirable cell types, such as pancreatic β cells, for transplantation therapy.

Abstract

Transformations from one tissue type to another make up a well established set of phenomena that can be explained by the principles of developmental biology. Although these phenomena might be rare in nature, we can now imagine the possibility of deliberately reprogramming cells from one tissue type to another by manipulating the expression of transcription factors. This approach could generate new therapies for many human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simple developmental hierarchy.
Figure 2: Diagram of human embryo gut at 35 days gestation.
Figure 3: How homeotic mutations can alter the character of body parts.
Figure 4: Model for metaplasia.
Figure 5: Growth of a metaplastic focus by replacement of neighbouring structural-proliferative units.
Figure 6: Developmental memory.

Similar content being viewed by others

References

  1. Raff, M. Adult stem cell plasticity: fact or artifact? Annu. Rev. Cell and Dev. Biol. 19, 1–22 (2003).

    Article  CAS  Google Scholar 

  2. Wagers, A. J. & Weissman, I. L. Plasticity of adult stem cells. Cell 116, 639–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Okada, T. S. Transdifferentiation. Flexibility in Cell Differentiation. (Clarendon Press, Oxford, 1991).

    Google Scholar 

  4. Rawlins, E. L. & Hogan, B. L. M. Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133, 2455–2465 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Slack, J. M. W. & Tosh, D. Transdifferentiation and metaplasia — switching cell types. Curr. Opin. Genet. Dev. 11, 581–586 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Tosh, D. & Slack, J. M. W. How cells change their phenotype. Nature Rev. Mol. Cell Biol. 3, 187–194 (2002).

    Article  CAS  Google Scholar 

  7. Eguchi, G. & Kodama, R. Transdifferentiation. Curr. Opin. Cell Biol. 5, 1023–1028. (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Beresford, W. A. Direct transdifferentiation: can cells change their phenotype without dividing? Cell Differen. Dev. 29, 81–93 (1990).

    Article  CAS  Google Scholar 

  9. Cohen, S. M. in The Development of Drosophila melanogaster (ed. Martinez-Arias, B. A.) (Cold Spring Harbor Press, New York, 1993).

    Google Scholar 

  10. Hadorn, E. Transdetermination in cells. Sci. Am. 219, 110–114 (1968).

    Article  CAS  PubMed  Google Scholar 

  11. Gehring, W. Clonal analysis of determination dynamics in cultures of imaginal disks in Drosophila melanogaster. Dev. Biol. 16, 438–456 (1967).

    Article  CAS  PubMed  Google Scholar 

  12. Villee, C. A. The phenomenon of homoeosis. Am. Nat. 76, 494–506 (1942).

    Article  Google Scholar 

  13. Needham, A. E. Regeneration and Wound Healing. (Methuen & Co. Ltd., London, 1952).

    Google Scholar 

  14. Willis, R. A. The Borderland of Embryology and Pathology. (Butterworths, London, 1962).

    Google Scholar 

  15. Slack, J. M. W. in Oxford Textbook of Pathology, Vol. I Principles of Pathology (eds. McGee, J., Isaacson, P. & Wright, N. A.) 565–568 (Oxford University Press, Oxford, 1992).

    Google Scholar 

  16. Slack, J. M. W. Homeotic transformations in man: implications for the mechanism of embryonic development and for the organization of epithelia. J. Theor. Biol. 114, 463–490 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Slack, J. M. W. Epithelial metaplasia and the 2nd anatomy. Lancet 2, 268–271 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Ward, A. M. Glandular neoplasia within the urinary tract. The aetiology of adenocarcinoma of the urothelium with a review of the literature. I. Virchows Arch. Abt. A Path. Anat. 352, 296–311 (1971).

    Article  CAS  Google Scholar 

  19. Auerbach, O., Stout, A. P., Hammond, E. C. & Garfinkel, L. Changes in bronchial epithelium in relation to cigarette smoking and cancer of the lung. New Eng. J. Med. 265, 253–267 (1961).

    Article  CAS  PubMed  Google Scholar 

  20. Falk, G. W. Barrett's esophagus. Gastroenterology 122, 1569–1591 (2002).

    Article  PubMed  Google Scholar 

  21. Garcia-Bellido, A. Homoeotic and atavic mutations in insects. Am. Zool. 17, 613–629 (1977).

    Article  Google Scholar 

  22. Lewis, E. B. Homeosis: the first 100 years. Trends Genet. 10, 341–343 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Capecchi, M. R. Hox genes and mammalian development. Cold Spring Harbor Symp. Quant. Biol. 62, 273–281 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Deschamps, J. et al. Initiation, establishment and maintenance of Hox gene expression patterns in the mouse. Int. J. Dev. Biol. 437, 635–650 (1999).

    Google Scholar 

  25. Maeda, R. K. & Karch, F. The ABC of the BX-C: the bithorax complex explained. Development 133, 1413–1422 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Slack, J. M. W. Essential Developmental Biology. (Blackwell Science, Oxford, 2005).

    Google Scholar 

  27. Gilbert, S. F. Developmental Biology. (Sinauer Associates Inc., Sunderland, 2006).

    Google Scholar 

  28. Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Afelik, S., Chen, Y. L. & Pieler, T. Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue. Genes Dev. 20, 1441–1446 (2006). Although the transcription factor p48 is generally considered to be involved in exocrine differentiation, this paper shows how p48, combined with PDX1, can induce the formation of ectopic pancreas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Damante, G., Tell, G. & Di Lauro, R. A unique combination of transcription factors controls differentiation of thyroid cells. Prog. Nucleic Acid Res. Mol. Biol. 66, 307–356 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kyrmizi, I. et al. Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev. 20, 2293–2305 (2006). A detailed study of the cross interactions among liver transcription factors that led to the identification of a core group that is required for the maintenance of the hepatic phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bryant, P. J. Pattern formation in imaginal wing disk of Drosophila melanogaster fate map, regeneration and duplication. J. Exp. Zool. 193, 49–77 (1975).

    Article  CAS  PubMed  Google Scholar 

  33. Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Episkopou, V. SOX2 functions in adult neural stem cells. Trends Neurosci. 28, 219–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. North, T. E., Stacy, T., Matheny, C. J., Speck, N. A. & de Bruijn, M. F. T. R. Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells but not in maturing erythroid cells. Stem Cells 22, 158–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Silberg, D. G., Swain, G. P., Suh, E. R. & Traber, P. G. Cdx1 and Cdx2 expression during intestinal development. Gastroenterology 119, 961–971 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Koster, M. I., Kim, S., Mills, A. A., DeMayo, F. J. & Roop, D. R. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev. 18, 126–131 (2004). Identification of p63 as a master control switch for distinguishing stratified from columnar epithelia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pellegrini, G. et al. p63 identifies keratinocyte stem cells. Proc. Natl Acad. Sci. USA 98, 3156–3161 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Potten, C. S. & Loeffler, M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties, lessons for and from the crypt. Development 110, 1001–1020 (1990).

    CAS  PubMed  Google Scholar 

  40. Slack, J. M. W. Stem cells in epithelial tissues. Science 287, 1431–1433 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Cairnie, A. B. & Millen, B. H. Fission of crypts in the small intestine of the irradiated mouse. Cell Tissue Kinet. 8, 189–196 (1975).

    CAS  PubMed  Google Scholar 

  42. Bennett, W. R., Crew, T. E., Slack, J. M. W. & Ward, A. Structural-proliferative units and organ growth: effects of insulin-like growth factor 2 on the growth of colon and skin. Development 130, 1079–1088 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Maves, L. & Schubiger, G. Wingless induces transdetermination in developing Drosophila imaginal discs. Development 121, 1263–1272 (1995).

    CAS  PubMed  Google Scholar 

  44. Maves, L. & Schubiger, G. Transdetermination in Drosophila imaginal discs: a model for understanding pluripotency and selector gene maintenance. Curr. Opin. Gen. Dev. 13, 472–479 (2003).

    Article  CAS  Google Scholar 

  45. Lee, N., Maurange, C., Ringrose, L. & Paro, R. Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 438, 234–237 (2005). A detailed explanation in molecular terms of the linkage between wounding of D. melanogaster discs and transdetermination.

    Article  CAS  PubMed  Google Scholar 

  46. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Correa, P. Human gastric carcinogenesis: a multistep and multifactorial process — 1st American Cancer Society Award Lecture on cancer epidemiology and prevention. Cancer Res. 52, 6735–6740 (1992).

    CAS  PubMed  Google Scholar 

  48. Beck, F., Chawengsaksophak, K., Waring, P., Playford, R. J. & Furness, J. B. Reprogramming of intestinal differentiation and intercalary regeneration in Cdx2 mutant mice. Proc. Natl Acad. Sci. USA 96, 7318–7323 (1999). Demonstration that the intestine to oesophagus transformation is due to loss of expression of Cdx2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Silberg, D. G. et al. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology 113, 478–486 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Silberg, D. G. et al. Cdx2 ectopic expression induced gastric intestinal metaplasia in transgenic mice. Gastroenterology 122, 689–696 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Mutoh, H. et al. Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem. Biophys. Res. Commun. 294, 470–479 (2002). A transgenic mouse model for a common type of metaplasia, based on ectopic expression of Cdx2 in the stomach.

    Article  CAS  PubMed  Google Scholar 

  52. Eda, A. et al. Aberrant expression of CDX2 in Barrett's epithelium and inflammatory esophageal mucosa. J. Gastroenterology 38, 14–22 (2003).

    Article  CAS  Google Scholar 

  53. Robboy, S. J., Scully, R. E., Welch, W. R. & Herbst, A. L. Intrauterine diethylstilbestrol exposure and its consequences — pathologic characteristics of vaginal adenosis, clear cell adenocarcinoma, and related lesions. Arch. Pathol. Lab. Med. 101, 1–5 (1977).

    CAS  PubMed  Google Scholar 

  54. Kurita, T., Cunha, G. R., Robboy, S. J., Mills, A. A. & Medina, R. T. Differential expression of p63 isoforms in female reproductive organs. Mech. Dev. 122, 1043–1055 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Kurita, T., Mills, A. A. & Cunha, G. R. Roles of p63 in the diethylstilbestrol-induced cervicovaginal adenosis. Development 131, 1639–1649 (2004). A plausible molecular explanation for how an adult woman can get vaginal cancer following exposure to DES while she was still a foetus.

    Article  CAS  PubMed  Google Scholar 

  56. Orkin, S. H. in Stem Cell Biology (eds. Marshak, D. R., Gardner, R. L. & Gottlieb, D.) 289–306 (Cold Spring Harbor Laboratory Press, New York, 2001).

    Google Scholar 

  57. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Shen, C. N., Slack, J. M. W. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nature Cell Biol. 2, 879–887 (2000). Discovery that one transcription factor, C/EBPβ, can reprogramme pancreatic exocrine cells to hepatocytes.

    Article  CAS  PubMed  Google Scholar 

  59. Tosh, D., Shen, C. N. & Slack, J. M. W. Differentiated properties of hepatocytes induced from pancreatic cells. Hepatology 36, 534–543 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Westmacott, A., Burke, Z. D., Slack, J. M. W. & Tosh, D. C/EBPα and C/EBPβ are early markers of liver development. Int. J. Dev. Biol. 50, 653–657 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scarpelli, D. G. & Rao, M. S. Differentiation of regenerating pancreatic cells into hepatocyte like cells. Proc. Natl Acad. Sci. USA 78, 2577–2581 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rao, M. S., Heldandi, A. V. & Reddy, J. K. Stem cell potential of ductular and periductular cells in the adult rat pancreas. Cell Diff. Dev. 29, 155–163 (1990).

    Article  CAS  Google Scholar 

  63. Stone, L. S. An investigation recording all salamanders which can and cannot regenerate a lens from the dorsal iris. J. Exp. Zool. 164, 87–104 (1967).

    Article  CAS  PubMed  Google Scholar 

  64. Yamada, T. & McDevitt, D. Conversion of iris epithelial cells as a model of differentiation control. Differentiation 27, 1–12 (1984).

    Article  CAS  PubMed  Google Scholar 

  65. Tsonis, P. A., Madhavan, M., Tancous, E. E. & Del Rio-Tsonis, K. A newt's eye view of lens regeneration. Int. J. Dev. Biol. 48, 975–980 (2004).

    Article  PubMed  Google Scholar 

  66. Eguchi, G. & Okada, T. S. Differentiation of lens tissue from the progeny of chick retinal pigment cells cultured in vitro: a demonstration of a switch of cell types in clonal cell culture. Proc. Natl Acad. Sci. USA 70, 1495–1499 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yasuda, K., Okada, T. S., Eguchi, G. & Hayashi, M. A demonstration of a switch in cell type in human fetal eye tissues in vitro: pigmented cells of the iris or the retina can transdifferentiate into lens. Exp. Eye Res. 26, 591–595 (1978).

    Article  CAS  PubMed  Google Scholar 

  68. Imokawa, Y. & Brockes, J. P. Selective activation of thrombin is a critical determinant for vertebrate lens regeneration. Curr. Biol. 13, 877–881 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Tanaka, E. M., Drechsel, D. N. & Brockes, J. P. Thrombin regulates S-phase re-entry by cultured newt myotubes. Curr. Biol. 9, 792–799 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Grogg, M. W. et al. BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature 438, 858–862 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oliver, G., Loosli, F., Koster, R., Wittbrodt, J. & Gruss, P. Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mech. Dev. 60, 233–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Alison, M. R. et al. Recipes for adult stem cell plasticity: fusion cuisine or readymade? J. Clin. Pathol. 57, 113–120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pomerantz, J. & Blau, H. M. Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nature Cell Biol. 6, 810–816 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Ramalo-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    Article  CAS  Google Scholar 

  75. Lewis, J. H., Slack, J. M. W. & Wolpert, L. Thresholds in development. J. Theor. Biol. 65, 579–590 (1977).

    Article  CAS  PubMed  Google Scholar 

  76. Eberharter, A. & Becker, P. B. Histone acetylation: a switch between repressive and permissive chromatin. EMBO Rep. 3, 224–229 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Gen. 33, 245–254 (2003).

    Article  CAS  Google Scholar 

  78. Workman, J. L. Nucleosome displacement in transcription. Genes Dev. 20, 2009–2017 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Baba, Y., Garrett, K. P. & Kincade, P. W. Constitutively active β-catenin confers multilineage differentiation potential on lymphoid and myeloid progenitors. Immunity 23, 599–609 (2005). A clear example of going 'one step back' by the overexpression of a transcription factor (in this case, stabilized β-catenin).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ding, S. & Schultz, P. G. A role for chemistry in stem cell biology. Nature Biotechnol. 22, 833–840 (2004).

    Article  CAS  Google Scholar 

  82. Verma, I. M. & Weitzman, M., D. Gene therapy. Ann. Rev. Biochem. 74, 711–738 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Gardlik, R. et al. Vectors and delivery systems in gene therapy. Med. Sci. Monit. 11, RA110–RA121 (2005).

    CAS  PubMed  Google Scholar 

  84. Lavigne, M. D. & Gorecki, D. C. Emerging vectors and targeting methods for nonviral gene therapy. Expert Opin. Emerg. Drugs 11, 541–557 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Ford, K. G., Souberbiele, B. E., Darling, D. & Farzaneh, F. Protein transduction: an alternative to genetic intervention? Gene Therapy 8, 1–4 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Li, W. C., Horb, M. E., Tosh, D. & Slack, J. M. W. In vitro transdifferentiation of hepatoma cells into functional pancreatic cells. Mech. Dev. 122, 835–847 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Ber, I. et al. Functional, persistent, and extended liver to pancreas transdifferentiation. J. Biol. Chem. 278, 31950–31957 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Karamouzis, M. V., Gorgoulis, V. G. & Papavassiliou, A. G. Transcription factors and neoplasia. Vistas in novel drug design. Clin. Cancer Res. 8, 949–961 (2002).

    CAS  PubMed  Google Scholar 

  89. Pera, M. F. & Trounson, A. O. Human embryonic stem cells: prospects for development. Development 131, 5515–5525 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Wobus, A. M. & Boheler, K. R. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev. 85, 635–678 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. D'Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnol. (2006).

  93. Lemaigre, F. & Zaret, K. S. Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr. Opin. Gen. Dev. 14, 582–590 (2004).

    Article  CAS  Google Scholar 

  94. Ahlgren, U., Jonsson, J., Jonsson, L., Simu, K. & Edlund, H. β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev. 12, 1763–1768 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zalzman, M., Anker-Kitai, L. & Efrat, S. Differentiation of human liver-derived, insulin-producing cells toward the β-cell phenotype. Diabetes 54, 2568–2575 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Sapir, T. et al. Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc. Natl Acad. Sci. USA 102, 7964–7969 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Apelqvist, A. et al. Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from gut progenitors. Development 129, 2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  99. Baeyens, L. et al. In vitro generation of insulin-producing β cells from adult exocrine pancreatic cells. Diabetologia 48, 49–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Sadler, T. W. Langman's Medical Embryology. (Williams and Wilkins, Baltimore, 1990).

    Google Scholar 

Download references

Acknowledgements

Research in the author's laboratory is supported by the Wellcome Trust, the Medical Research Council, EU Framework 6 and Sulis Innovation. I am grateful to D. Tosh, J. Dutton, D. Eberhard, K. O'Neill and R. Slack for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Jonathan M. W. Slack's homepage

Glossary

Differentiated cell

A differentiated cell is a functional cell of a particular type, usually identifiable by its specific appearance under the light microscope. Examples include a neuron, an intestinal absorptive cell and a cartilage cell.

Pluripotent

Able to become one of several types of differentiated cell.

Transdetermination

A term used in D. melanogaster genetics to indicate a change of commitment of imaginal disc cells such that they will become one disc type rather than another, for example wing instead of leg.

Haemolymph

The blood of an insect or other arthropod. Unlike the blood of vertebrates, the haemolymph normally fills the whole body cavity.

Serial heteromorphosis

'Heteromorphosis' means a body part or tissue that is developing in the wrong place during embryogenesis or regeneration. 'Serial', in this context, relates to a set of body parts formed by similar developmental mechanisms, such as the segments or appendages of an arthropod.

Endoderm

The endoderm is the innermost of the three germ layers of an early embryo. In vertebrates, the endoderm becomes the epithelial lining of the gut and the respiratory system.

Allantoic evagination

The allantois is an extra-embryonic structure of higher vertebrate embryos. In the human embryo, it consists of an outgrowth of the hindgut, which enters the umbilical cord.

Hox gene system

The Hox genes encode a set of transcription factors that are concerned with specifying the head-to-tail sequence of body parts during the embryonic development of animals.

Heterotopia

A body part or tissue that developed in the wrong place during the course of embryonic development.

Pancreatic exocrine cells

The cells of the pancreas that secrete digestive enzymes.

Undifferentiated cell

An undifferentiated cell is one that is not differentiated. Most undifferentiated cells are stem or progenitor cells. They can have a commitment to form a particular body part or tissue type.

Mesoderm

The mesoderm is the middle one of the three germ layers of an early embryo. In vertebrates, the mesoderm becomes the muscles, circulatory system, kidneys and connective tissues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slack, J. Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol 8, 369–378 (2007). https://doi.org/10.1038/nrm2146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing