Search
Login
Content
Journal info
Publish
Article
Published: 22 March 2021
Shortfalls and opportunities in terrestrial vertebrate species discovery
Mario R. Moura
& Walter Jetz
 
Nature Ecology & Evolution  5, 631–639 (2021)Cite this article
2554 Accesses
1 Citations
671 Altmetric
Metrics
Abstract
Much of biodiversity remains undiscovered, causing species and their functions to remain unrealized and potentially lost in ignorance. Here we use extensive species-level data in a time-to-event model framework to identify taxonomic and geographic discovery gaps in terrestrial vertebrates. Biological, environmental and sociological factors all affect discovery probability and together provide strong predictive ability for species discovery. Our model identifies distinct taxonomic and geographic unevenness in future discovery potential, with greatest opportunities for amphibians and reptiles, and for Neotropical and Indo-Malayan forests. Brazil, Indonesia, Madagascar and Colombia emerge as holding greatest discovery opportunities, with a quarter of potential discoveries estimated. These findings highlight the importance of international policy support for basic taxonomic research and the potential of quantitative models to aid species discovery.
Access options
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
Subscribe
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
Rent or Buy
All prices are NET prices.
Additional access options:
Log in
Access through your institution
Learn about institutional subscriptions
Data availability
Data produced for this study are available as Supplementary Data files. Raw data to reproduce the analysis of this study are available at vertlife.org/data/discoverypotential​.
Code availability
R scripts to reproduce the analysis of this study are available at vertlife.org/data/discoverypotential​.
References
1.
Costello, M. J., May, R. M. & Stork, N. E. Can we name Earth’s species before they go extinct? Science 339, 413–416 (2013).
CASPubMedArticleGoogle Scholar
2.
Mora, C., Rollo, A. & Tittensor, D. P. Comment on ‘Can we name Earth’s species before they go extinct?’. Science341, 237 (2013).
CASPubMedArticleGoogle Scholar
3.
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the Ocean? PLoS Biol. 9, e1001127 (2011).
CAS
 
PubMed
 
PubMed Central
 
Article
 
Google Scholar
 
4.
May, R. & Beverton, R. J. H. How many species? Phil. Trans. R. Soc. B 330, 293–304 (1990).
Article
 
Google Scholar
 
5.
Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).
PubMed
 
Article
 
Google Scholar
 
6.
Raven, P. H. & Wilson, E. O. A fifty-year plan for biodiversity surveys. Science258, 1099–1100 (1992).
CASPubMedArticleGoogle Scholar
7.
Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).
Article
 
Google Scholar
 
8.
Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst.46, 523–549 (2015).
Article
 
Google Scholar
 
9.Guide to the Global Taxonomy Initiative (Secretariat of the Convention on Biological Diversity, 2010).
10.
Costello, M. J., May, R. M. & Stork, N. E. Response to comments on ‘Can we name Earth’s species before they go extinct?’. Science 341, 237 (2013).
CASPubMedArticleGoogle Scholar
11.
Bebber, D. P., Marriott, F. H. C., Gaston, K. J., Harris, S. A. & Scotland, R. W. Predicting unknown species numbers using discovery curves. Proc. R. Soc. B274, 1651–1658 (2007).
PubMed
 
Article
 
Google Scholar
 
12.
Edie, S. M., Smits, P. D. & Jablonski, D. Probabilistic models of species discovery and biodiversity comparisons. Proc. Natl Acad. Sci. USA114, 3666–3671 (2017).
CASPubMedArticleGoogle Scholar
13.
Guenard, B., Weiser, M. D. & Dunn, R. R. Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat. Proc. Natl Acad. Sci. USA 109, 7368–7373 (2012).
CASPubMedArticleGoogle Scholar
14.
Blackburn, T. M. & Gaston, K. J. What determines the probability of discovering a species - a study of South-American Oscine Passerine birds. J. Biogeogr. 22, 7–14 (1995).
Article
 
Google Scholar
 
15.
Costello, M. J., Lane, M., Wilson, S. & Houlding, B. Factors influencing when species are first named and estimating global species richness. Glob. Ecol. Conserv. 4, 243–254 (2015).
Article
 
Google Scholar
 
16.
Collen, B., Purvis, A. & Gittleman, J. L. Biological correlates of description date in carnivores and primates. Glob. Ecol. Biogeogr. 13, 459–467 (2004).
Article
 
Google Scholar
 
17.
Diniz-Filho, J. A. F. et al. Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Glob. Ecol. Biogeogr. 14, 469–477 (2005).
Article
 
Google Scholar
 
18.
Costello, M. J., Houlding, B. & Joppa, L. N. Further evidence of more taxonomists discovering new species, and that most species have been named: response to Bebber et al. (2014). New Phytol. 202, 739–740 (2014).
PubMed
 
Article
 
Google Scholar
 
19.
Meiri, S. Small, rare and trendy: traits and biogeography of lizards described in the 21st century. J. Zool. 299, 251–261 (2016).
Article
 
Google Scholar
 
20.Klein, J. P. & Moeschberger, M. L. Survival Analysis: Techniques for Censored and Truncated Data.(Springer, 2003).
21.
Essl, F., Rabitsch, W., Dullinger, S., Moser, D. & Milasowszky, N. How well do we know species richness in a well-known continent? Temporal patterns of endemic and widespread species descriptions in the European fauna. Glob. Ecol. Biogeogr. 22, 29–39 (2013).
Article
 
Google Scholar
 
22.
Colli, G. R. et al. In the depths of obscurity: knowledge gaps and extinction risk of Brazilian worm lizards (Squamata, Amphisbaenidae). Biol. Conserv. 204, 51–62 (2016).
Article
 
Google Scholar
 
23.
Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mammal. 99, 1–14 (2018).
Article
 
Google Scholar
 
24.
Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).
PubMed
 
PubMed Central
 
Article
 
Google Scholar
 
25.
Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).
Article
 
Google Scholar
 
26.
Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).
CASPubMedArticleGoogle Scholar
27.
Joppa, L. N., Roberts, D. L. & Pimm, S. L. How many species of flowering plants are there? Proc. R. Soc. B 278, 554–559 (2011).
PubMed
 
Article
 
Google Scholar
 
28.
Giam, X. et al. Reservoirs of richness: least disturbed tropical forests are centres of undescribed species diversity. Proc. R. Soc. B 279, 67–76 (2012).
PubMed
 
Article
 
Google Scholar
 
29.
Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).
CAS
 
PubMed
 
PubMed Central
 
Article
 
Google Scholar
 
30.
Gouveia, S. F., Villalobos, F., Dobrovolski, R., Beltrão-Mendes, R. & Ferrari, S. F. Forest structure drives global diversity of primates. J. Anim. Ecol. 83, 1523–1530 (2014).
PubMed
 
Article
 
Google Scholar
 
31.
Oliveira, B. F. & Scheffers, B. R. Vertical stratification influences global patterns of biodiversity. Ecography 42, 249–249 (2019).
Article
 
Google Scholar
 
32.Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232–1244 (2016).
33.
Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).
PubMed
 
Article
 
Google Scholar
 
34.
Garnett, S. T. & Christidis, L. Taxonomy anarchy hampers conservation. Nature546, 25–27 (2017).
CASPubMedArticleGoogle Scholar
35.
Isaac, N. J. B., Mallet, J. & Mace, G. M. Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol. Evol. 19, 464–469 (2004).
PubMed
 
Article
 
Google Scholar
 
36.
Bremer, K., Bremer, B., Karis, P. & Källersjö, M. Time for change in taxonomy. Nature 343, 202 (1990).
CAS
 
PubMed
 
Article
 
PubMed Central
 
Google Scholar
 
37.
Raposo, M. A. et al. What really hampers taxonomy and conservation? A riposte to Garnett and Christidis (2017). Zootaxa 4317, 179–184 (2017).
Article
 
Google Scholar
 
38.
Wake, D. B. Persistent plethodontid themes: species, phylogenies, and biogeography. Herpetologica 73, 242–251 (2017).
Article
 
Google Scholar
 
39.
Tedesco, P. A. et al. Estimating how many undescribed species have gone extinct. Conserv. Biol. 28, 1360–1370 (2014).
CAS
 
PubMed
 
Article
 
PubMed Central
 
Google Scholar
 
40.
Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol.27, 151–159 (2012).
PubMed
 
Article
 
Google Scholar
 
41.
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
CASPubMedArticleGoogle Scholar
42.
Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).
PubMed
 
Article
 
Google Scholar
 
43.
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).
CAS
 
PubMed
 
PubMed Central
 
Article
 
Google Scholar
 
44.
González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data-deficient amphibians. Curr. Biol. 29, 1557–1563.e3 (2019).
PubMedArticleCASGoogle Scholar
45.
Moura, M. R. et al. Geographical and socioeconomic determinants of species discovery trends in a biodiversity hotspot. Biol. Conserv.220, 237–244 (2018).
Article
 
Google Scholar
 
46.
Gaston, K. J., Blackburn, T. M. & Loder, N. Which species are described first? The case of North-American butterflies. Biodivers. Conserv. 4, 119–127 (1995).
Article
 
Google Scholar
 
47.
Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data4, 170123 (2017).
PubMed
 
PubMed Central
 
Article
 
Google Scholar
 
48.
Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).
Article
 
Google Scholar
 
49.
Hallmann, K. & Griebeler, E. M. An exploration of differences in the scaling of life history traits with body mass within reptiles and between amniotes. Ecol. Evol. 8, 5480–5494 (2018).
PubMed
 
PubMed Central
 
Article
 
Google Scholar
 
50.
Slavenko, A., Itescu, Y., Ihlow, F. & Meiri, S. Home is where the shell is: predicting turtle home range sizes. J. Anim. Ecol. 85, 106–114 (2016).
PubMed
 
Article
 
Google Scholar
 
51.
Regis, K. W. & Meik, J. M. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data. PeerJ 5, e2914 (2017).
PubMed
 
PubMed Central
 
Article
 
Google Scholar
 
52.
Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C. H. & Meiri, S. Is the island rule general? Turtles disagree. Glob. Ecol. Biogeogr. 23, 689–700 (2014).
Article
 
Google Scholar
 
53.
Faurby, S. & Svenning, J.-C. Resurrection of the island rule: human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat.187, 812–820 (2016).
PubMed
 
Article
 
Google Scholar
 
54.
Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology95, 2027–2027 (2014).
Article
 
Google Scholar
 
55.Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204A, 23–31 (2016).
56.
Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).
Article
 
Google Scholar
 
57.
Gaston, K. J., Blackburn, T. M. & Lawton, J. H. Interspecific abundance–range size relationships: an appraisal of mechanisms. J. Anim. Ecol. 66, 579–601 (1997).
Article
 
Google Scholar
 
58.
Borregaard, M. K. & Rahbek, C. Causality of the relationship between geographic distribution and species abundance. Q. Rev. Biol. 85, 3–25 (2010).
PubMed
 
Article
 
Google Scholar
 
59.IUCN Red List of Threatened Species. Version 2018 (IUCN, 2018).
60.
Freitag, S., Hobson, C., Biggs, H. C. & Jaarsveld, A. S. Testing for potential survey bias: the effect of roads, urban areas and nature reserves on a southern African mammal data set. Anim. Conserv. 1, 119–127 (1998).
Article
 
Google Scholar
 
61.
Kier, G. & Barthlott, W. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodivers. Conserv. 10, 1513–1529 (2001).
Article
 
Google Scholar
 
62.
Vilela, B. & Villalobos, F. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234 (2015).
Article
 
Google Scholar
 
63.Papavero, N. Essays on the History of Neotropical Dipterology: With Special Reference to Collectors: 1750–1905: Vol. I (Museu de Zoologia da Universidade de São Paulo, 1971).
64.
Baselga, A., Lobo, J. M., Hortal, J., Jiménez-Valverde, A. & Gómez, J. F. Assessing alpha and beta taxonomy in eupelmid wasps: determinants of the probability of describing good species and synonyms. J. Zool. Syst. Evol. Res.48, 40–49 (2010).
Article
 
Google Scholar
 
65.
Yang, W., Ma, K. & Kreft, H. Environmental and socio-economic factors shaping the geography of floristic collections in China. Glob. Ecol. Biogeogr. 23, 1284–1292 (2014).
Article
 
Google Scholar
 
66.
Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).
PubMed
 
PubMed Central
 
Article
 
Google Scholar
 
67.R Core Team R: A Language and Environment for Statistical Computing Version 3.5.3 (R Foundation for Statistical Computing, 2019).
68.Hijmans, R. J. raster: Geographic Data Analysis and Modeling https://cran.r-project.org/package=raster (2015).
69.
Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).
PubMed
 
PubMed Central
 
Article
 
Google Scholar
 
70.
Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).
Article
 
Google Scholar
 
71.
Joppa, L. N., Roberts, D. L. & Pimm, S. L. The population ecology and social behaviour of taxonomists. Trends Ecol. Evol. 26, 551–553 (2011).
PubMed
 
Article
 
Google Scholar
 
72.Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.3.1 http://stringr.tidyverse.org (2018).
73.Mahto, A. splitstackshape: Stack and Reshape Datasets After Splitting Concatenated Values. R package version 1.4.6 http://github.com/mrdwab/splitstackshape (2018).
74.
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
PubMed
 
PubMed Central
 
Article
 
Google Scholar
 
75.
Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied Linear Statistical Models (McGraw-Hill, 2004).
Google Scholar
 
76.Naimi, B. usdm: Uncertainty Analysis for Species Distribution Models https://cran.r-project.org/package=usdm (2017).
77.von Linné, C. Systema Naturae​https://doi.org/10.5962/bhl.title.542 (Impensis Direct Laurentii Salvii, 1758).
78.Harrell, F. E. Regression Modeling Strategies (Springer, 2001).
79.
George, B., Seals, S. & Aban, I. Survival analysis and regression models. J. Nucl. Cardiol. 21, 686–694 (2014).
PubMed
 
PubMed Central
 
Article
 
Google Scholar
 
80.
Jackson, C. flexsurv: a platform for parametric survival modeling in R. J. Stat. Softw. 70, 1–33 (2016).
Article
 
Google Scholar
 
81.Burnham, K. P. & Anderson, D. A. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
82.
Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
PubMed
 
Article
 
Google Scholar
 
83.Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.6 https://cran.r-project.org/package=MuMIn (2019).
84.
Alexander Pyron, R. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583 (2011).
PubMed
 
Article
 
Google Scholar
 
85.
Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).
PubMed
 
PubMed Central
 
Article
 
CAS
 
Google Scholar
 
86.
Fisher, D. O. & Blomberg, S. P. Correlates of rediscovery and the detectability of extinction in mammals. Proc. R. Soc. B 278, 1090–1097 (2011).
PubMed
 
Article
 
Google Scholar
 
87.
Jetz, W., Sekercioglu, C. H. & Böhning-Gaese, K. The worldwide variation in avian clutch size across species and space. PLoS Biol. 6, e303 (2008).
PubMed Central
 
Article
 
CAS
 
PubMed
 
Google Scholar
 
88.
Jetz, W. & Rubenstein, D. R. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 21, 72–78 (2011).
CASPubMedArticleGoogle Scholar
89.
Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).
CASPubMedArticleGoogle Scholar
90.Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.12.4 https://cran.r-project.org/package=data.table (2019).
91.
Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: elements of a synthesis. J. Biogeogr. 35, 483–500 (2008).
Article
 
Google Scholar
 
92.
Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA111, 13690–13696 (2014).
CASPubMedArticleGoogle Scholar
93.Database of Global Administrative Areas Version 3.6 (GADM, 2019); http://www.gadm.org
Download references
Acknowledgements
We are grateful to S. Meiri, D. S. Rinnan, G. Reygondeau, N. Upham, M. Costello, D. Wake and J. Hortal for providing helpful comments on the research or manuscript drafts. We thank C. Haddad, L. C. Márquez, G. Singh and A. F. Meyer for providing pictures of the example species in Fig. 1. This work was produced, in part, with the support of the National Geographic Society through a partnership with the E.O. Wilson Biodiversity Foundation and its Half-Earth Project. W. J. also acknowledges support from NSF grant DEB-1441737 and NASA grants 80NSSC17K0282 and 80NSSC18K0435.
Author information
Affiliations
Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
Mario R. Moura & Walter Jetz
Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
Mario R. Moura & Walter Jetz
Department of Biological Sciences, Federal University of Paraíba, Areia, Brazil
Mario R. Moura
Contributions
M.R.M. and W.J. conceived the study, developed the figures and wrote the text; M.R.M. analysed the data.
Corresponding authors
Correspondence to Mario R. Moura or Walter Jetz.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Ecology & Evolution thanks Joaquin Hortal, Stewart Edie and Lucas N. Joppa for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Top 30 tetrapod families with highest percentage of total future species discoveries.
a, Amphibians. b, Reptiles. c, Mammals. d, Birds. The horizontal lines denote the 95% confidence intervals. Taxon-level estimates are available through Supplementary Data 1.
Extended Data Fig. 2 Top 30 tetrapod families with highest standardized proportion of unknown species.
a, Amphibians. b, Reptiles. c, Mammals. d, Birds. The horizontal lines denote the 95% confidence intervals. Taxon-level estimates are available through Supplementary Data 1.
Extended Data Fig. 3 Geographical discovery patterns for terrestrial vertebrates at different spatial resolutions.
a–c, Percent of total predicted discoveries across grid cells and their respective (d–f) uncertainty (± margin of error). g–i, Standardized proportion of undiscovered species across grid cells and their respective (j–l) uncertainty (± margin of error). Outlined and hatched regions designate grid cells holding values within respectively the top 10% and top 5% of the mapped metric. Maps drawn at spatial resolutions of 220, 440, 880 km. Assemblage-level estimates are available through Supplementary Data 2.
Extended Data Fig. 4 Geographical discovery patterns for amphibians at different spatial resolutions.
a–c, Percent of total discoveries across grid cells and their respective (d–f) uncertainty (± margin of error). g–i, Standardized proportion of undiscovered species across grid cells and their respective (j–l) uncertainty (± margin of error). Outlined and hatched regions designate grid cells holding values within respectively the top 10% and top 5% of the mapped metric. Maps drawn at spatial resolutions of 220, 440, 880 km. Assemblage-level estimates are available through Supplementary Data 2.
Extended Data Fig. 5 Geographical discovery patterns for reptiles at different spatial resolutions.
a–c, Percent of total discoveries across grid cells and their respective (d-f) uncertainty (± margin of error). (g–i) Standardized proportion of undiscovered species across grid cells and their respective (j–l) uncertainty (± margin of error). Outlined and hatched regions designate grid cells holding values within respectively the top 10% and top 5% of the mapped metric. Maps drawn at spatial resolutions of 220, 440, 880 km. Assemblage-level estimates are available through Supplementary Data 2.
Extended Data Fig. 6 Geographical discovery patterns for mammals at different spatial resolutions.
a–c, Percent of total discoveries across grid cells and their respective (d-f) uncertainty (± margin of error). g–i, Standardized proportion of undiscovered species across grid cells and their respective (j–l) uncertainty (± margin of error). Outlined and hatched regions designate grid cells holding values within respectively the top 10% and top 5% of the mapped metric. Maps drawn at spatial resolutions of 220, 440, 880 km. Assemblage-level estimates are available through Supplementary Data 2.
Extended Data Fig. 7 Geographical discovery patterns for birds at different spatial resolutions.
a–c, Percent of total discoveries across grid cells and their respective (d-f) uncertainty (± margin of error). g–i, Standardized proportion of undiscovered species across grid cells and their respective (j–l) uncertainty (± margin of error). Outlined and hatched regions designate grid cells holding values within respectively the top 10% and top 5% of the mapped metric. Maps drawn at spatial resolutions of 220, 440, 880 km. Assemblage-level estimates are available through Supplementary Data 2.
Extended Data Fig. 8 Biogeographical realms and biomes with higher percent of total future discoveries.
Biogeographic- and Biome-wide percent of total discoveries extracted from assemblages defined at (a) 220 km, (b) 440 km, and (c) 880 km of spatial resolution. Bioregion-level estimates are available through Supplementary Data 3.
Extended Data Fig. 9 Top 30 bioregions with higher percent of total future discoveries.
Bioregions-wide percent of total discoveries extracted from assemblages defined at (a) 220 km, (b) 440 km, and (c) 880 km of spatial resolution. A bioregion combines biogeographical realm and biome information. Bioregion-level estimates are available through Supplementary Data 3.
Extended Data Fig. 10 Top 30 countries with higher percent of total discoveries.
Country-wide percent of total discoveries extracted from assemblages defined at (a) 220 km, (b) 440 km, and (c) 880 km of spatial resolution. Country-level estimates are available through Supplementary Data 4.
Supplementary information
Supplementary Information
Supplementary Methods, Results, References, Tables 1–4 and Figs. 1–15.
Reporting Summary
Peer Review Information
Supplementary Data
Estimates of discovery potential at the levels of taxa, assemblages, bioregions and countries: TaxonLevelEstimates.zip (Supplementary Data 1), AssemblageLevelEstimates.zip (Supplementary Data 2), BioregionLevelEstimates.zip (Supplementary Data 3), CountryLevelEstimates.zip (Supplementary Data 4).
Rights and permissions
Reprints and Permissions
About this article
Cite this article
Moura, M.R., Jetz, W. Shortfalls and opportunities in terrestrial vertebrate species discovery. Nat Ecol Evol 5, 631–639 (2021). https://doi.org/10.1038/s41559-021-01411-5
Download citation
Received
13 July 2020
Accepted
01 February 2021
Published
22 March 2021
Issue Date
May 2021
DOI
https://doi.org/10.1038/s41559-021-01411-5
Subjects
Biodiversity
Conservation biology
Macroecology
Zoology
Nature Ecology & Evolution (Nat Ecol Evol)
ISSN 2397-334X (online)
About us
Press releases
Press office
Contact us
Discover content
Journals A-Z
Articles by subject
Nano
Protocol Exchange
Nature Index
Publishing policies
Nature portfolio policies
Open access
Author & Researcher services
Reprints & permissions
Research data
Language editing
Scientific editing
Nature Masterclasses
Nature Research Academies
Libraries & institutions
Librarian service & tools
Librarian portal
Open research
Recommend to library
Advertising & partnerships
Advertising
Partnerships & Services
Media kits
Branded content
Career development
Nature Careers
Nature Conferences
Nature events
Regional websites
Nature Africa
Nature China
Nature India
Nature Italy
Nature Japan
Nature Korea
Nature Middle East
Legal & Privacy
Privacy Policy
Use of cookies
Manage cookies/Do not sell my data
Legal notice
Accessibility statement
Terms & Conditions
California Privacy Statement
© 2021 Springer Nature Limited
Your privacy
We use cookies to make sure that our website works properly, as well as some "optional" cookies to personalise content and advertising, provide social media features and analyse how people use our site. By accepting some or all optional cookies you give consent to the processing of your personal data, including transfer to third parties, some in countries outside of the European Economic Area that do not offer the same data protection standards as the country where you live. You can decide which optional cookies to accept by clicking on "Manage Settings", where you can also find more information about how your personal data is processed.View our privacy policy