Skip to main content
Log in

Non-thermal processes in large solar flares

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:

  1. (1)

    The ∼10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.

  2. (2)

    The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.

  3. (3)

    The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.

  4. (4)

    Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ∼1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.

  5. (5)

    High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.

  6. (6)

    The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ∼5×1030 ergs in >20 keV electrons is required for detectable white-light emission.

The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnoldy, R. L., Kane, S. R. and Winckler, J. R.: 1968a, Astrophys. J. 151, 711.

    Google Scholar 

  • Arnoldy, R. L., Kane, S. R. and Winckler, J. R.: 1968b, University of Minnesota, Cosmic Ray Technical Report CR-108.

  • Bratenahl, A. and Baum, P. J.: 1976, Solar Phys. 47, 345.

    Google Scholar 

  • Brown, J. C.: 1971, Solar Phys. 18, 489.

    Google Scholar 

  • Brown, J. C.: 1973a, Solar Phys. 29, 421.

    Google Scholar 

  • Brown, J. C.: 1973b, Solar Phys., 31, 143.

    Google Scholar 

  • Brown, J. C. and Hoyng, P.: 1975, Astrophys. J. 200, 734.

    Google Scholar 

  • Buneman, O.: 1959, Phys. Rev. 115, 503.

    Google Scholar 

  • Canfield, R. C.: 1974, Solar Phys. 34, 339.

    Google Scholar 

  • Chupp, E. L., Forrest, D. J. and Suri, A. N.: 1973, in R. Ramaty and R. G. Stone (eds.), High Energy Phenomena on the Sun, NASA SP-342, p. 285.

  • Colgate, S. A.: 1965, J. Geophys. Res. 70, 3161.

    Google Scholar 

  • Datlow, D. W.: 1975, in S. R. Kane (ed.), ‘Solar, Gamma-, X-, and EUV Radiation’, IAU Symp. 68, 191.

  • Dere, K. P., Horan, D. M. and Kreplin, R. W.: 1973, Collected Data Reports on August 1972 Solar Terrestrial Events, World Data Center A, UAG-78, part II, p. 298.

  • Donnelly, R. F. and Hall, L. A.: 1973, Solar Phys. 31, 411.

    Google Scholar 

  • Donnelly, R. F., Wood, Jr., A. T. and Noyes, R. W.: 1973, Solar Phys. 29, 107.

    Google Scholar 

  • Dryer, M.: 1974, Space Sci. Rev. 15, 403.

    Google Scholar 

  • Dryer, M., Smith, Z. K., Steinoltson, R. S., Mihalov, J. D., Wolfe, J. H. and Chao, J. K.: 1976, J. Geophys. Res., 81, 4651.

    Google Scholar 

  • Elliott, H.: 1964, Planetary Space Sci. 12, 657.

    Google Scholar 

  • Ellison, M. A.: 1963, Planetary Space Sci. 11, 597.

    Google Scholar 

  • Frost, K. J.: 1974, paper presented at Solar Physics-Plasma Physics Workshop held at Stanford University, Sept. 17–20.

  • Frost, K. J. and Dennis, B. K.: 1971, Astrophys. J. 165, 655.

    Google Scholar 

  • Gingerich, O., Noyes, R. W., Kalkofen, W. and Cuny, Y.: 1971, Solar Phys. 18, 347.

    Google Scholar 

  • Ginzburg, V. L. and Syrovatskii, S. I.: 1964, The Origin of Cosmic Rays. Pergamon Press, p. 97.

  • Gordon, I. M.: 1954, Doklady AN SSSR 94, 813.

    Google Scholar 

  • Gosling, J. T., Hildner, E., MacQueen, R. M., Numro, R. H., Poland, A. I. and Ross, C. L.: 1974, J. Geophys. Res. 79, 4581.

    Google Scholar 

  • Hamberger, S. M. and Friedman, M.: 1968, Phys. Rev. Lett. 21, 674.

    Google Scholar 

  • Hamberger, S. M., Jancarik, J., Sharp, L. E., Aldcroft, D. A. and Wetherall, A.: 1971, Proceedings International Conference Plasma Physics and Controlled Nuclear Fusion, Vol. II, p. 37.

    Google Scholar 

  • Hoyng, P.: 1975, Doctoral thesis, University of Utrecht, The Netherlands.

    Google Scholar 

  • Hudson, H. S.: 1972, Solar Phys. 24, 414.

    Google Scholar 

  • Hudson, H. S.: 1973, in R. Ramaty and R. G. Stone (eds.), High Energy Phenomena on the Sun, NASA, SP-342, p. 207.

  • Hundhausen, A. J. and Gentry, R. A.: 1969, J. Geophys. Res. 74, 2900.

    Google Scholar 

  • Jackson, J. D.: 1962, Classical Electrodynamics, J. Wiley and Sons, N.Y.

    Google Scholar 

  • Jefferies, J. T. and Orrall, F. Q.: 1961, Astrophys. J. 133, 946.

    Google Scholar 

  • Kahler, S. W. and Kreplin, R. W.: 1971, Astrophys. J. 168, 531.

    Google Scholar 

  • Kane, S. R.: 1974, in Gordon Newkirk Jr. (ed.), ‘Coronal Disturbances’, IAU Symp. 57, 105.

  • Kane, S. R. and Winckler, J. R.: 1969, University of Minnesota Cosmic Ray Technical Report, CR-135.

  • Lin, R. P.: 1973, in R. Ramaty and R. G. Stone (eds.), High Energy Phenomena on the Sun, NASA SP-342, p. 439.

  • Lin, R. P. and Hudson, H. S.: 1971, Solar Phys. 17, 412.

    Google Scholar 

  • Machado, M. and Rust, D. M.: 1974, Solar Phys. 38, 499.

    Google Scholar 

  • McDaniel, E. W.: 1964, Collision Phenomena in Ionized Gases, J. Wiley and Sons, p. 600.

  • McGuire, R. E.: 1976, Ph.D. Thesis, Physics Department, University of California, Berkeley.

    Google Scholar 

  • McIntosh, P. S. and Donnelly, R. F.: 1972, Solar Phys. 23, 444.

    Google Scholar 

  • Najita, K. and Orrall, F. Q.: 1970, Solar Phys. 15, 176.

    Google Scholar 

  • Nakagawa, Y. and Raadu, M. A.: 1972, Solar Phys. 25, 127.

    Google Scholar 

  • Neupert, W. M., Thomas, R. J. and Chapman, R. D.: 1974, Solar Phys. 34, 349.

    Google Scholar 

  • Peterson, L. D., Datlowe, D. W. and McKenzie, D. L.: 1973, in R. Ramaty and R. G. Stone (eds.), High Energy Phenomena on the Sun, NASA, SP-342, p. 132.

  • Ramaty, R., Kozlovsky, B. and Lingenfelter, R. E.: 1975, Space Sci. Rev. 18, 341.

    Google Scholar 

  • Ramaty, R. and Lingenfelter, R. E.: 1975, in S. R. Kane (ed.), ‘Solar Gamma, X-, and EUV Radiation’, IAU Symp. 68, 363.

  • Ramaty, R. and Wang, H. T.: 1975, 14th International Cosmic Ray Conference Proceedings, 5, 1635.

    Google Scholar 

  • Reinhard, R. and Wibbernez, G.: 1974, Solar Phys. 36, 473.

    Google Scholar 

  • Roelof, E. C., Lezniak, J. A., Webber, W R., McDonald, F. B., Teegarden, B. J. and Trainor, J. H.: 1974, in D. E. Page (ed.), Correlated Interplanetary and Magnetospheric Observations, D. Reidel, Publ., p. 563.

  • Rust, D. M. and Hegwer, F.: 1975, Solar Phys. 40, 141.

    Google Scholar 

  • Severny, A. B.: 1957, Izv. Krymsk. Astrofiz. Observ. 17, 129.

    Google Scholar 

  • Somov, B. V.: 1975, Solar Phys. 42, 235.

    Google Scholar 

  • Stein, W. A. and Ney, E. P.: 1963, J. Geophys. Res. 68, 65.

    Google Scholar 

  • Švestka, Z.: 1966, Space Sci. Rev. 5, 388.

    Google Scholar 

  • Švestka, Z.: 1970, Solar Phys. 13, 471.

    Google Scholar 

  • Sweet, P. A.: 1969, Annual Review Astron. Astrophys. 8, 149.

    Google Scholar 

  • Tanaka, K. and Nakagawa: 1973, Solar Phys. 33, 187.

    Google Scholar 

  • Thomas, R. N. and Athay, R. G.: 1961, Physics of the Solar Chromosphere, Interscience Publishers.

  • Trubnikov, B. A.: 1965, Rev. Plasma Phys. 1, 105.

    Google Scholar 

  • Van Hollenbeke, M. A. I., MaSung, L. S. and McDonald, F. B.: 1975, Solar Phys. 41, 189.

    Google Scholar 

  • Wang, H. T. and Ramaty, R.: 1974, Solar Phys. 36, 129.

    Google Scholar 

  • Zirin, H. and Tanaka, K.: 1973, Solar Phys. 32, 173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, R.P., Hudson, H.S. Non-thermal processes in large solar flares. Sol Phys 50, 153–178 (1976). https://doi.org/10.1007/BF00206199

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206199

Keywords

Navigation