Skip to main content
Log in

Superluminal spectral densities of ultra-relativistic electrons in intense electromagnetic wave fields

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Superluminal radiation from electrons accelerated in electromagnetic waves is investigated. The radiation field is a Proca field with negative mass-square, minimally coupled to the electron current. The spectrum is continuous in the ultra-relativistic regime, where steepest-descent asymptotics can be used to evaluate the power coefficients. The time averaging of Lissajous orbits in polarized wave fields is discussed, and the tachyonic spectral densities of electrons orbiting in intense laser beams are derived. In the ultra-relativistic limit, realized by high injection energy or high field intensity, the spectral functions are evaluated in closed form in terms of Airy integrals. In contrast to electromagnetic radiation, there is a longitudinal polarization component, and oscillations emerge at high beam intensity in the longitudinal and transversal spectral slopes, generated by the negative mass-square of the tachyonic quanta. The thermal ultra-relativistic electron plasma of two active galactic nuclei is analyzed in this regard, based on TeV spectral maps obtained with imaging air Cherenkov detectors. Specifically, tachyonic cascade fits are performed to γ-ray flares of the TeV blazars RGB J0152+017 and 3C 66A, and the transversal and longitudinal radiation components are disentangled in the spectral maps. The curvature of the spectral slopes is shown to be intrinsic, caused by the Boltzmann factor of the electronic source plasma radiating the tachyonic cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tanaka, Prog. Theor. Phys. 24, 171 (1960)

    Article  ADS  Google Scholar 

  2. R. Newton, Science 167, 1569 (1970)

    Article  ADS  Google Scholar 

  3. G. Feinberg, Sci. Am. 222(2), 69 (1970)

    Article  Google Scholar 

  4. C. Baltay, G. Feinberg, N. Yeh, R. Linsker, Phys. Rev. D 1, 759 (1970)

    Article  ADS  Google Scholar 

  5. R. Tomaschitz, Eur. Phys. J. B 17, 523 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Tomaschitz, Physica A 335, 577 (2004)

    Article  ADS  Google Scholar 

  7. R. Tomaschitz, Eur. Phys. J. C 49, 815 (2007)

    Article  ADS  Google Scholar 

  8. A.V. Bessarab, A.A. Gorbunov, S.P. Martynenko, N.A. Prudkoy, IEEE Trans. Plasma Sci. 32, 1400 (2004)

    Article  ADS  Google Scholar 

  9. A.V. Bessarab, S.P. Martynenko, N.A. Prudkoi, A.V. Soldatov, V.A. Terekhin, Radiat. Phys. Chem. 75, 825 (2006)

    Article  ADS  Google Scholar 

  10. M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Science 301, 200 (2003)

    Article  ADS  Google Scholar 

  11. T. Baba, Nat. Photon. 2, 465 (2008)

    Article  ADS  Google Scholar 

  12. G.M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, R.W. Boyd, Science 312, 895 (2006)

    Article  ADS  Google Scholar 

  13. L. Thévenaz, Nat. Photon. 2, 474 (2008)

    Article  ADS  Google Scholar 

  14. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Science 312, 892 (2006)

    Article  ADS  Google Scholar 

  15. Y.I. Salamin, S.X. Hu, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rep. 427, 41 (2006)

    Article  ADS  Google Scholar 

  16. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  17. R. Tomaschitz, Ann. Phys. 322, 677 (2007)

    Article  MATH  ADS  Google Scholar 

  18. R. Tomaschitz, Physica A 387, 3480 (2008)

    Article  ADS  Google Scholar 

  19. R. Tomaschitz, Physica B 404, 1383 (2009)

    Article  ADS  Google Scholar 

  20. R. Tomaschitz, Opt. Commun. 282, 1710 (2009)

    Article  ADS  Google Scholar 

  21. A. Pukhov, Rep. Prog. Phys. 66, 47 (2003)

    Article  ADS  Google Scholar 

  22. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  23. R. Tomaschitz, Eur. Phys. J. C (2010). doi:10.1140/epjc/s10052-010-1401-8

    MATH  Google Scholar 

  24. F. Aharonian, A.G. Akhperjanian, U. Barres de Almeida, A.R. Bazer-Bachi, B. Behera, M. Beilicke et al., Astron. Astrophys. 481, L103 (2008)

    Article  ADS  Google Scholar 

  25. V.A. Acciari, E. Aliu, T. Arlen, M. Beilicke, W. Benbow, M. Böttcher et al., Astrophys. J. 693, L104 (2009)

    Article  ADS  Google Scholar 

  26. E. Aliu, H. Anderhub, L.A. Antonelli, P. Antoranz, M. Backes, C. Baixeras et al., Astrophys. J. 692, L29 (2009)

    Article  ADS  Google Scholar 

  27. R. Tomaschitz, Physica A 385, 558 (2007)

    Article  ADS  Google Scholar 

  28. R. Tomaschitz, EPL 84, 19001 (2008)

    Article  ADS  Google Scholar 

  29. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, New York, 1966)

    MATH  Google Scholar 

  30. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)

    MATH  Google Scholar 

  31. D.E. Aspnes, Phys. Rev. 147, 554 (1966)

    Article  ADS  Google Scholar 

  32. S. Ichimaru, Rev. Mod. Phys. 65, 255 (1993)

    Article  ADS  Google Scholar 

  33. U. Teubner, P. Gibbon, Rev. Mod. Phys. 81, 445 (2009)

    Article  ADS  Google Scholar 

  34. A. Minguzzi, M.P. Tosi, Physica B 300, 27 (2001)

    Article  ADS  Google Scholar 

  35. R. Tomaschitz, Phys. Lett. A 366, 289 (2007)

    Article  ADS  Google Scholar 

  36. R. Tomaschitz, Phys. Lett. A 372, 4344 (2008)

    Article  ADS  Google Scholar 

  37. J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 17, 157 (1945)

    Article  ADS  Google Scholar 

  38. F. Hoyle, J.V. Narlikar, Rev. Mod. Phys. 67, 113 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Tomaschitz, Class. Quantum Gravity 18, 4395 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. G.N. Plass, Rev. Mod. Phys. 33, 37 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  41. J. Rafelski, L. Labun, Y. Hadad, AIP Conf. Proc. 1228, 39 (2009)

    ADS  Google Scholar 

  42. Y. Hadad, L. Labun, J. Rafelski, N. Elkina, C. Klier, H. Ruhl, arXiv:1005.3980

  43. P.A.M. Dirac, Proc. R. Soc. Lond. A 257, 32 (1960)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982)

    Google Scholar 

  45. A.A. Abdo, M. Ackermann, M. Ajello, W.B. Atwood, M. Axelsson, L. Baldini et al., Astrophys. J. 707, 1310 (2009)

    Article  ADS  Google Scholar 

  46. R. Tomaschitz, EPL 85, 29001 (2009)

    Article  ADS  Google Scholar 

  47. T. Lindner, D.S. Hanna, J. Kildea, J. Ball, D.A. Bramel, J. Carson et al., Astropart. Phys. 28, 338 (2007)

    Article  ADS  Google Scholar 

  48. D. Horan, H.M. Badran, I.H. Bond, P.J. Boyle, S.M. Bradbury, J.H. Buckley et al., Astrophys. J. 603, 51 (2004)

    Article  ADS  Google Scholar 

  49. F. Aharonian, A. Akhperjanian, M. Beilicke, K. Bernlöhr, H.-G. Börst, H. Bojahr et al., Astron. Astrophys. 421, 529 (2004)

    Article  ADS  Google Scholar 

  50. R. Tomaschitz, Physica B 405, 1022 (2010)

    Article  ADS  Google Scholar 

  51. R. Tomaschitz, EPL 89, 39002 (2010)

    Article  ADS  Google Scholar 

  52. R. Tomaschitz, J. Phys. A 38, 2201 (2005)

    Article  MATH  ADS  Google Scholar 

  53. R. Tomaschitz, Eur. Phys. J. C 45, 493 (2006)

    Article  ADS  Google Scholar 

  54. J.H. Eberly, A. Sleeper, Phys. Rev. 176, 1570 (1968)

    Article  ADS  Google Scholar 

  55. E.S. Sarachik, G.T. Schappert, Phys. Rev. D 1, 2738 (1970)

    Article  ADS  Google Scholar 

  56. A.A. Sokolov, I.M. Ternov, Radiation from Relativistic Electrons (Hilger, Bristol, 1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tomaschitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomaschitz, R. Superluminal spectral densities of ultra-relativistic electrons in intense electromagnetic wave fields. Appl. Phys. B 101, 143–165 (2010). https://doi.org/10.1007/s00340-010-4182-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4182-8

Keywords

Navigation