Skip to main content
Log in

Oxidation of Minor Elements from an Iron–Nickel–Chromium–Cobalt–Phosphorus Alloy in 17.3% CO2–H2 Gas Mixtures at 700–1000 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Fe–Ni–Cr–Co–P alloys were exposed to 17.3% CO2–H2 gas mixtures to investigate the oxidation of minor elements in metallic alloys in the early solar system. Reaction temperatures varied between 700 and 1000 °C. Gas-phase equilibrium was attained at 800, 900, and 1000 °C, yielding H2–H2O–CO–CO2 gas mixtures. Experiments at 700 and 750 °C did not achieve gas-phase equilibrium and were performed in H2–CO2 gas mixtures. Reaction timescales varied from 1 to 742 h. The experimental samples were characterized using optical microscopy, electron microprobe analysis, wavelength-dispersive-spectroscopy X-ray elemental mapping, and X-ray diffraction. In all experiments Cr experiences internal oxidation to produce inclusions of chromite (FeCr2O4) and eskolaite (Cr2O3) and surface layers of Cr-bearing magnetite [(Fe,Cr)3O4]. At 900 and 1000 °C, P is lost from the alloy via diffusion and sublimation from the metal surface. Analysis of P zoning profiles in the remnant metal cores allows for the determination of the P diffusion coefficient in the bulk metal, which is constant, and the internally oxidized layer, which is shown to vary linearly with distance from the metal surface. At 800 and 900 °C, P oxidizes to form a surface layer of graftonite [Fe3(PO4)2] while at 700 and 750 °C P forms inclusions of the phosphide-mineral schreibersite [(Fe,Ni)3P].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. S. Lauretta, D. T. Kremser, and B. Fegley, Icarus 122, 288 (1996).

    Article  ADS  CAS  Google Scholar 

  2. D. S. Lauretta, K. Lodders, and B. Fegley, Science 277, 358 (1997).

    Article  PubMed  ADS  CAS  Google Scholar 

  3. D. S. Lauretta, K. Lodders, and B. Fegley, Meteoritics & Planetary Science 33, 821 (1998).

    CAS  ADS  Google Scholar 

  4. B. Fegley Jr., Space Science Reviews 92, 177 (2000).

    Article  ADS  CAS  Google Scholar 

  5. B. Zanda, D. M. Bourot, C. Perron, and R. H. Hewins, Science 265, 1846 (1994).

    Article  PubMed  ADS  CAS  Google Scholar 

  6. D. S. Lauretta, P. R. Buseck, and T. J. Zega, Geochimica et Cosmichimica Acta 65, 1337 (2001).

    Article  ADS  CAS  Google Scholar 

  7. D. S. Lauretta and P. R. Buseck, Meteoritics & Planetary Science 38, 59 (2003).

    Article  ADS  CAS  Google Scholar 

  8. Y. Hong and B. Fegley Jr., Meteoritics and Planetary Science 33, 1101 (1998).

    Article  CAS  ADS  Google Scholar 

  9. D. S. Lauretta, Oxidation of Metals 64, 1 (2005).

    Article  CAS  Google Scholar 

  10. J. Megusar and G. H. Meier, Metallurgical Transactions A 7A, 1133 (1976).

    Article  ADS  CAS  Google Scholar 

  11. J. Crank, The Mathematics of Diffusion (Oxford University Press, New York, 1975).

    Google Scholar 

  12. A. D. Le Claire and G. Neumann, in Numerical Data and Functional Relationship in Science and Technology. Landolt-Bornstein, New Series, Group III, ed. H. Mehrer, Vol. 26 (Springer Verlag, Berlin, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante S. Lauretta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauretta, D.S., Schmidt, B.E. Oxidation of Minor Elements from an Iron–Nickel–Chromium–Cobalt–Phosphorus Alloy in 17.3% CO2–H2 Gas Mixtures at 700–1000 °C. Oxid Met 71, 219–235 (2009). https://doi.org/10.1007/s11085-009-9140-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9140-7

Keywords

Navigation