en.m.wikipedia.org
Locator/Identifier Separation Protocol
This article is about an Internet communication protocol. For a programming language, see Lisp (programming language).
Locator/ID Separation Protocol (LISP) (RFC 6830) is a "map-and-encapsulate" protocol which is developed by the Internet Engineering Task Force LISP Working Group.[1] The basic idea behind the separation is that the Internet architecture combines two functions, routing locators (where a client is attached to the network) and identifiers (who the client is) in one number space: the IP address. LISP supports the separation of the IPv4 and IPv6 address space following a network-based map-and-encapsulate scheme (RFC 1955). In LISP, both identifiers and locators can be IP addresses or arbitrary elements like a set of GPS coordinates or a MAC address.[2]
The LISP Logo
Historical origin
The Internet Architecture Board's October 2006 Routing and Addressing Workshop [3] renewed interest in the design of a scalable routing and addressing architecture for the Internet. Key issues driving this renewed interest include concerns about the scalability of the routing system and the impending exhaustion of IPv4 address space. Since the IAB workshop, several proposals have emerged that attempted to address the concerns expressed at the workshop. All of these proposals are based on a common concept: the separation of Locator and Identifier in the numbering of Internet devices, often termed the "Loc/ID split".[4]
Current Internet Protocol Architecture
The current namespace architecture used by the Internet Protocol uses IP addresses for two separate functions:
LISP
There are several advantages to decoupling Location and Identifier, and to LISP specifically.[5]
A recent discussion of several LISP use cases may be found in [6]
IETF has an active workgroup establishing standards for LISP. As of 2016, the LISP specifications are on the experimental track. The LISP workgroup plans moving the core specifications onto the standards track in 2017.
Terminology
The LISP mapping system
In the Locator/Identifier Separation Protocol the network elements (routers) are responsible for looking up the mapping between end-point-identifiers (EID) and route locators (RLOC) and this process is invisible to the Internet end-hosts.[10][11] The mappings are stored in a distributed database called the mapping system, which responds to the lookup queries. The LISP beta network initially used a BGP-based mapping system called LISP ALternative Topology (LISP+ALT),[12] but this has now been replaced by a DNS-like indexing system called DDT inspired from LISP-TREE.[13] The protocol design made it easy to plug in a new mapping system, when a different design proved to have benefits. Some proposals have already emerged and have been compared.
Implementations
LISP beta network
A testbed has been developed to gain real-life experience with LISP. Participants include Google, Facebook, NTT, Level3, InTouch N.V. and the Internet Systems Consortium.[23] As of January 2014, around 600 companies, universities, and individual contributors from 34 countries are involved. The geographical distribution of participating routers, and the prefixes they are responsible for, can be observed on the LISPmon project website (updated daily). The multi-company, LISP-community initiative LISP4.net/LISP6.net publishes relevant information about this beta network on http://www.lisp4.net/ and http://www.lisp6.net/. Since March 2020 the LISP Beta Network is not maintained anymore.
LISP-Lab consortium research network
The LISP-Lab project,[24] coordinated by UPMC/LIP6, aims at building a LISP network experimentation platform exclusively built using open source LISP nodes (OpenLISP) acting as ITR/ETR tunnelling routers, MS/MR mapping servers/resolvers, DDT root and Proxy ITR/ETR. Partners include two academic institutions (UPMC, TPT), two Cloud Networking SME (Alphalink, NSS), two network operators (Renater, Orange), two SMEs on Access/Edge Networking (Border 6, Ucopia) and one Internet eXchange Point (Rezopole). More information on https://web.archive.org/web/20190508220217/http://www.lisp-lab.org/ . The platform should be opened to external partners on 2014/2015 and is already interconnected to the LISP Beta Network with an OpenLISP DDT root.[25]
Future use of LISP
ICAO is considering Ground-Based LISP as a candidate technology for the next-generation Aeronautical Telecommunications Network (ATN).[26] The solution is under further development in part of the SESAR (Single European Sky ATM Research) FCI activities.
Other approaches
Several proposals for separating the two functions and allowing the Internet to scale better have been proposed, for instance GSE/8+8 as network based solution and SHIM6, HIP and ILNP as host based solutions.
See also
References
  1. ^ "Locator/ID Separation Protocol (lisp) Working Group".
  2. ^ "LISP Canonical Address Format (LCAF)".
  3. ^ "RFC4984 - Report from the IAB Workshop on Routing and Addressing". Retrieved 2010-10-28.
  4. ^ "IETF I-D Architectural Implications of Locator/ID Separation".
  5. ^ "IETF I-D draft-brim-lisp-analysis". Retrieved 2010-10-28.
  6. ^ Saucez, Damien ; Iannone, Luigi ; Bonaventure, Olivier ; Farinacci, Dino, Designing a Deployable Future Internet: the Locator/Identifier Separation Protocol (LISP) case IEEE Internet Computing, December 2012.
  7. ^ "Interworking LISP with IPv4 and IPv6".
  8. ^ "Interworking LISP with IPv4 and IPv6".
  9. ^ "NAT traversal for LISP".
  10. ^ IPJ article about LISP
  11. ^ Scaling the Internet with LISP Archived 2010-03-15 at the Wayback Machine tutorial
  12. ^ "LISP Alternative Topology (LISP+ALT)".
  13. ^ Jakab, Lorand; Cabellos-Aparicio, Albert; Coras, Florin; Saucez, Damien; Bonaventure, Olivier (2010). "LISP-TREE: A DNS Hierarchy to Support the LISP Mapping System". IEEE Journal on Selected Areas in Communications. 28 (8): 1332–1343. CiteSeerX 10.1.1.716.8421. doi​:​10.1109/JSAC.2010.101011​.
  14. ^ Iannone, Luigi; Saucez, Damien; Bonaventure, Olivier (March 2011). "Implementing the Locator/ID Separation Protocol: Design and Experience". Computer Networks. 55 (4): 948–958. CiteSeerX 10.1.1.648.3739. doi​:​10.1016/j.comnet.2010.12.017​.
  15. ^ Open LISP control-plane project: https://github.com/lip6-lisp/control-plane
  16. ^ Research activities on LISP at LIP6: http://www.lisp.ipv6.lip6.fr (webserver hosted behind the LISP Beta Network)
  17. ^ "IETF I-D draft-meyer-lisp-mn". Retrieved 2011-09-13.
  18. ^ https://github.com/K-OpenNet/ONOS-LISP-Management-Plane
  19. ^​https://github.com/opennetworkinglab/onos/tree/master/protocols/lisp
  20. ^ https://github.com/farinacci/lispers.net
  21. ^​https://wiki.fd.io/view/Project_Proposals/Overlay_Network_Engine
  22. ^ https://github.com/jLisp/jlisp
  23. ^ "LISP Site Status". Retrieved 2010-10-28.
  24. ^ LISP-Lab project website: http://www.lisp-lab.org Archived 2019-05-08 at the Wayback Machine
  25. ^ DDT root website: http://ddt-root.org
  26. ^ "Ground-Based LISP for the Aeronautical Telecommunications Network". Retrieved 2018-03-06.
External links
Last edited on 17 January 2021, at 17:49
Content is available under CC BY-SA 3.0 unless otherwise noted.
Privacy policy
Terms of Use
Desktop
HomeRandomNearbyLog inSettingsDonateAbout WikipediaDisclaimers
LanguageWatchEdit