en.m.wikipedia.org

Fraction of variance unexplained

(Redirected from Statistical noise)

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.

Find sources: "Fraction of variance unexplained" – news · newspapers · books ·scholar · JSTOR (June 2020)

Find sources: "Fraction of variance unexplained" – news · newspapers · books ·scholar · JSTOR (June 2020)

For broader coverage of this topic, see Explained variation.

In statistics, the fraction of variance unexplained (FVU) in the context of a regression task is the fraction of variance of the regressand (dependent variable) Y which cannot be explained, i.e., which is not correctly predicted, by the explanatory variables X.

Formal definition

Suppose we are given a regression function yielding for each

an estimate

where

is the vector of the ith observations on all the explanatory variables.[1]:181 We define the fraction of variance unexplained (FVU) as:

where R2 is the coefficient of determination and VARerr and VARtot are the variance of the residuals and the sample variance of the dependent variable. SSerr (the sum of squared predictions errors, equivalently the residual sum of squares), SStot (the total sum of squares), and SSreg (the sum of squares of the regression, equivalently the explained sum of squares) are given by

Alternatively, the fraction of variance unexplained can be defined as follows:

Explanation

It is useful to consider the second definition to understand FVU. When trying to predict Y, the most naïve regression function that we can think of is the constant function predicting the mean of Y, i.e.,

. It follows that the MSE of this function equals the variance of Y; that is, SSerr = SStot, and SSreg = 0. In this case, no variation in Y can be accounted for, and the FVU then has its maximum value of 1.

More generally, the FVU will be 1 if the explanatory variables X tell us nothing about Y in the sense that the predicted values of Y do not covary with Y. But as prediction gets better and the MSE can be reduced, the FVU goes down. In the case of perfect prediction where

for all i, the MSE is 0, SSerr = 0, SSreg = SStot, and the FVU is 0.

See also

- Coefficient of determination
- Correlation
- Explained sum of squares
- Lack-of-fit sum of squares
- Linear regression
- Regression analysis

References

^ Achen, C. H. (1990). "'What Does "Explained Variance" Explain?: Reply". Political Analysis. 2 (1): 173–184. doi:10.1093/pan/2.1.173.

Last edited on 15 April 2021, at 18:12

Content is available under CC BY-SA 3.0 unless otherwise noted.