Variational inequality

In mathematics, a variational inequality is an inequality involving a functional, which has to be solved for all possible values of a given variable, belonging usually to a convex set. The mathematical theory of variational inequalities was initially developed to deal with equilibrium problems, precisely the Signorini problem: in that model problem, the functional involved was obtained as the first variation of the involved potential energy. Therefore, it has a variational origin, recalled by the name of the general abstract problem. The applicability of the theory has since been expanded to include problems from economics, finance, optimization and game theory.

History edit

The first problem involving a variational inequality was the Signorini problem, posed by Antonio Signorini in 1959 and solved by Gaetano Fichera in 1963, according to the references (Antman 1983, pp. 282–284) and (Fichera 1995): the first papers of the theory were (Fichera 1963) and (Fichera 1964a), (Fichera 1964b). Later on, Guido Stampacchia proved his generalization to the Lax–Milgram theorem in (Stampacchia 1964) in order to study the regularity problem for partial differential equations and coined the name "variational inequality" for all the problems involving inequalities of this kind. Georges Duvaut encouraged his graduate students to study and expand on Fichera's work, after attending a conference in Brixen on 1965 where Fichera presented his study of the Signorini problem, as Antman 1983, p. 283 reports: thus the theory become widely known throughout France. Also in 1965, Stampacchia and Jacques-Louis Lions extended earlier results of (Stampacchia 1964), announcing them in the paper (Lions & Stampacchia 1965): full proofs of their results appeared later in the paper (Lions & Stampacchia 1967).

Definition edit

Following Antman (1983, p. 283), the definition of a variational inequality is the following one.

Definition 1. Given a Banach space  , a subset   of  , and a functional   from   to the dual space   of the space  , the variational inequality problem is the problem of solving for the variable   belonging to   the following inequality:

 

where   is the duality pairing.

In general, the variational inequality problem can be formulated on any finite – or infinite-dimensional Banach space. The three obvious steps in the study of the problem are the following ones:

  1. Prove the existence of a solution: this step implies the mathematical correctness of the problem, showing that there is at least a solution.
  2. Prove the uniqueness of the given solution: this step implies the physical correctness of the problem, showing that the solution can be used to represent a physical phenomenon. It is a particularly important step since most of the problems modeled by variational inequalities are of physical origin.
  3. Find the solution or prove its regularity.

Examples edit

The problem of finding the minimal value of a real-valued function of real variable edit

This is a standard example problem, reported by Antman (1983, p. 283): consider the problem of finding the minimal value of a differentiable function   over a closed interval  . Let   be a point in   where the minimum occurs. Three cases can occur:

  1. if   then  
  2. if   then  
  3. if   then  

These necessary conditions can be summarized as the problem of finding   such that

  for  

The absolute minimum must be searched between the solutions (if more than one) of the preceding inequality: note that the solution is a real number, therefore this is a finite dimensional variational inequality.

The general finite-dimensional variational inequality edit

A formulation of the general problem in   is the following: given a subset   of   and a mapping  , the finite-dimensional variational inequality problem associated with   consist of finding a  -dimensional vector   belonging to   such that

 

where   is the standard inner product on the vector space  .

The variational inequality for the Signorini problem edit

 
The classical Signorini problem: what will be the equilibrium configuration of the orange spherically shaped elastic body resting on the blue rigid frictionless plane?

In the historical survey (Fichera 1995), Gaetano Fichera describes the genesis of his solution to the Signorini problem: the problem consist in finding the elastic equilibrium configuration   of an anisotropic non-homogeneous elastic body that lies in a subset   of the three-dimensional euclidean space whose boundary is  , resting on a rigid frictionless surface and subject only to its mass forces. The solution   of the problem exists and is unique (under precise assumptions) in the set of admissible displacements   i.e. the set of displacement vectors satisfying the system of ambiguous boundary conditions if and only if

 

where   and   are the following functionals, written using the Einstein notation

 ,     ,     

where, for all  ,

  •   is the contact surface (or more generally a contact set),
  •   is the body force applied to the body,
  •   is the surface force applied to  ,
  •   is the infinitesimal strain tensor,
  •   is the Cauchy stress tensor, defined as
 
where   is the elastic potential energy and   is the elasticity tensor.

See also edit

References edit

Historical references edit

  • Antman, Stuart (1983), "The influence of elasticity in analysis: modern developments", Bulletin of the American Mathematical Society, 9 (3): 267–291, doi:10.1090/S0273-0979-1983-15185-6, MR 0714990, Zbl 0533.73001. An historical paper about the fruitful interaction of elasticity theory and mathematical analysis: the creation of the theory of variational inequalities by Gaetano Fichera is described in §5, pages 282–284.
  • Duvaut, Georges (1971), "Problèmes unilatéraux en mécanique des milieux continus", Actes du Congrès international des mathématiciens, 1970, ICM Proceedings, vol. Mathématiques appliquées (E), Histoire et Enseignement (F) – Volume 3, Paris: Gauthier-Villars, pp. 71–78, archived from the original (PDF) on 2015-07-25, retrieved 2015-07-25. A brief research survey describing the field of variational inequalities, precisely the sub-field of continuum mechanics problems with unilateral constraints.
  • Fichera, Gaetano (1995), "La nascita della teoria delle disequazioni variazionali ricordata dopo trent'anni", Incontro scientifico italo-spagnolo. Roma, 21 ottobre 1993, Atti dei Convegni Lincei (in Italian), vol. 114, Roma: Accademia Nazionale dei Lincei, pp. 47–53. The birth of the theory of variational inequalities remembered thirty years later (English translation of the title) is an historical paper describing the beginning of the theory of variational inequalities from the point of view of its founder.

Scientific works edit

External links edit