Anyonic Lie algebra: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
m Add: bibcode, doi, arxiv, issue. Removed URL that duplicated unique identifier. Removed parameters. | You can use this bot yourself. Report bugs here.| Activated by User:Headbomb | via #UCB_Headbomb
Adding short description: "Subset of algebra" (Shortdesc helper)
Tag: Reverted
Line 1: Line 1:
{{short description|Subset of algebra}}
In [[mathematics]], an '''[[anyon]]ic [[Lie algebra]]''' is a ''U''(1) [[graded vector space]] <math>L</math> over <math>\mathbb{C}</math> equipped with a [[bilinear operator]] <math>[\cdot, \cdot] \colon L \times L \rightarrow L</math> and [[linear map]]s <math>\varepsilon\colon L\to\mathbb{C}</math> (some authors use <math>|\cdot|\colon L\to \mathbb{C}</math>) and <math>\Delta\colon L \to L\otimes L</math> such that <math>\Delta X = X_i \otimes X^i</math>, satisfying following axioms:<ref>{{Cite journal|last=Majid|first=S.|date=21 Aug 1997|title=Anyonic Lie Algebras|journal=Czechoslov. J. Phys.|volume=47|issue=12|pages=1241–1250|arxiv=q-alg/9708022|doi=10.1023/A:1022877616496|bibcode=1997CzJPh..47.1241M}}</ref>
In [[mathematics]], an '''[[anyon]]ic [[Lie algebra]]''' is a ''U''(1) [[graded vector space]] <math>L</math> over <math>\mathbb{C}</math> equipped with a [[bilinear operator]] <math>[\cdot, \cdot] \colon L \times L \rightarrow L</math> and [[linear map]]s <math>\varepsilon\colon L\to\mathbb{C}</math> (some authors use <math>|\cdot|\colon L\to \mathbb{C}</math>) and <math>\Delta\colon L \to L\otimes L</math> such that <math>\Delta X = X_i \otimes X^i</math>, satisfying following axioms:<ref>{{Cite journal|last=Majid|first=S.|date=21 Aug 1997|title=Anyonic Lie Algebras|journal=Czechoslov. J. Phys.|volume=47|issue=12|pages=1241–1250|arxiv=q-alg/9708022|doi=10.1023/A:1022877616496|bibcode=1997CzJPh..47.1241M}}</ref>



Revision as of 02:33, 13 May 2020

In mathematics, an anyonic Lie algebra is a U(1) graded vector space over equipped with a bilinear operator and linear maps (some authors use ) and such that , satisfying following axioms:[1]

for pure graded elements X, Y, and Z.

References

  1. ^ Majid, S. (21 Aug 1997). "Anyonic Lie Algebras". Czechoslov. J. Phys. 47 (12): 1241–1250. arXiv:q-alg/9708022. Bibcode:1997CzJPh..47.1241M. doi:10.1023/A:1022877616496.