
Getting More Out of Biomedical Documents with GATE’s
Full Lifecycle Open Source Text Analytics
Hamish Cunningham*, Valentin Tablan, Angus Roberts, Kalina Bontcheva

Department of Computer Science, University of Sheffield, Sheffield, United Kingdom

Abstract

This software article describes the GATE family of open source text analysis tools and processes. GATE is one of the most
widely used systems of its type with yearly download rates of tens of thousands and many active users in both academic
and industrial contexts. In this paper we report three examples of GATE-based systems operating in the life sciences and in
medicine. First, in genome-wide association studies which have contributed to discovery of a head and neck cancer
mutation association. Second, medical records analysis which has significantly increased the statistical power of treatment/
outcome models in the UK’s largest psychiatric patient cohort. Third, richer constructs in drug-related searching. We also
explore the ways in which the GATE family supports the various stages of the lifecycle present in our examples. We conclude
that the deployment of text mining for document abstraction or rich search and navigation is best thought of as a process,
and that with the right computational tools and data collection strategies this process can be made defined and repeatable.
The GATE research programme is now 20 years old and has grown from its roots as a specialist development tool for text
processing to become a rather comprehensive ecosystem, bringing together software developers, language engineers and
research staff from diverse fields. GATE now has a strong claim to cover a uniquely wide range of the lifecycle of text analysis
systems. It forms a focal point for the integration and reuse of advances that have been made by many people (the majority
outside of the authors’ own group) who work in text processing for biomedicine and other areas. GATE is available online
,1. under GNU open source licences and runs on all major operating systems. Support is available from an active user and
developer community and also on a commercial basis.
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Introduction

We talk, we write, we listen or read, and we are so skilled in our

use of language that we are seldom aware of the complexities

involved in its production and consumption. It is natural,

therefore, that a large proportion of what we know of the world

is externalised exclusively in textual form. That fraction of our

science, technology and art that is codified in databases,

taxonomies, ontologies and the like (let’s call this structured data) is

relatively small. Structured data is, of course, machine-tractable in

ways that text can never be (at least in advance of a true artificial

intelligence, something that recedes as fast as ever over the long-

term horizon). Unfortunately structure can also be inflexible and

expensive to produce in ways that text is not.

When scientific results are delivered exclusively via textual

publication, the process of replicating these results is often inefficient

as a consequence. Although advances in computational platforms

raise exciting possibilities for increased sharing and reuse of

experimental setups and research results, still there is little sign that

scientific publication will cease its relentless growth in the near future.

Similarly, although clinical recording continues to make

progress away from paper and towards on-line systems with

structured data models, still the primacy of text as a persistent

communication mechanism (within and between medical teams

and between medics and their patients) means that medical

records will contain a wealth of textual, unstructured material for

the forseeable future.

Technology seeks to bridge this gap under the headings of text

mining, or natural language processing (NLP), with biomedical

text mining and BioNLP being the subfields related to biomed-

icine. Cohen and Hunter [1], Rzhetsky et al. [2] and Rodriguez-

Esteban [3] provide introductions to the topic; the general aim is

to discern the semantic content of text and encode this in a

structured way, often by adding annotations to segments of the

text. An example: having created an ontology (or database) of gene

names, with each gene having a unique identifier, then a relevant

document would be annotated such that all occurrences of (often

ambiguous) gene names in the text are annotated with the correct

unique identifier.

This paper introduces a research programme (now 20 years old)

that has resulted in GATE, a General Architecture for Text

Engineering [4,5]. In recent years GATE has grown from its roots

as a specialist development tool for text processing to become a
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rather comprehensive ecosystem bringing together software

developers, language engineers and research staff from diverse

fields. GATE now has a strong claim to cover a uniquely wide

range of the lifecycle of text analysis systems. It forms a focal point

for the integration and reuse of advances that have been made by

many people (the majority outside of the authors’ own group) who

work in text processing for biomedicine and other areas.

In line with the trends towards openness in life sciences R&D

and in publishing, GATE is 100% open source. This brings

benefits that have been recognised elsewhere (vendor indepen-

dence; security; longevity; flexibility; minimisation of costs; see e.g.

[6,7]). Less often remarked upon but arguably particularly

significant in medical contexts are traceability and transparency.

Findings that are explicable and fully open may be worth more

than results that appear magically (but mysteriously) from black

boxes.

In this paper we will discuss several areas within biomedicine

where GATE has facilitated advances. First, in providing evidence

in genome-wide association studies, resulting in the finding of a

new gene/disease association for head and neck cancer. Second,

finding data in medical records, allowing a significant amount of

information to be added to the evidence base for clinical planning

and policy formation. Third, in creating new search functionality

in drug-related literature search.

We begin by describing the technology that has been used in

these applications, before describing each of the projects in more

detail.

Design and Implementation

Summary
The GATE family of tools has grown over the years to include a

desktop application for developers, a collaborative workflow-based

web application, an index server, a Java library, an architecture

and a process. To summarise, GATE comprises:

N GATE Developer: an integrated development environment

(IDE) for language processing components, which is bundled

with a widely used information extraction [8] system and a

diverse set of several hundred other plugins ,2.;

N a cloud computing solution for hosted large-scale text

processing, GATE Cloud ,3.;

N GATE Teamware: a collaborative environment for large-

scale manual semantic annotation projects built around a

workflow engine and a heavily-optimised backend service

infrastructure;

N a multi-paradigm index server, GATE Mı́mir, which can be

used to index and search over text, annotations, semantic

schemas (ontologies), and semantic meta-data (instances),

allowing queries that arbitrarily mix full-text, structural,

linguistic and semantic constraints and that can scale to

terabytes of text;

N a framework, GATE Embedded: an object library optimised

for inclusion in diverse applications giving access to all the

services used by GATE Developer and others;

N an architecture: a high-level organisational picture of language

processing software composition;

N a process for the creation of robust and maintainable services

,39.;

N a wiki ,40. (mainly as host for our own web content, but also

as a vehicle for an experimental programme in controlled

natural languages [9]).

(Note that GATE Developer and Embedded are bundled, and

in early distributions were referred to just as ‘GATE’.)

Background
The GATE family is intended to minimise time and effort in

developing and maintaining rich information extraction, retrieval

and management systems, while staying at or near to the state of

the technological art, partly by favouring interoperation and reuse

over reinvention.

Our programme originated in the early 1990s, partly as a

response to research in software reuse and in object-oriented

design methods and programming languages [10]. The first phase

of our work was to analyse a wide range of the approaches taken to

software architecture in the field of natural language processing

[11–13]. We used this analysis to propose a high level abstraction

of how language processing software systems can be composed so

as to maximise reusability, both of the engineering functions

underlying these systems and of new instances of particular cases.

This model (or architecture) made particular use of work on

interoperation of information extraction systems [14] and work on

stand-off markup in XML processing pipelines [15]. The graph-

based appoach that we (and others) adopted has since become a

defacto standard [16] and underlies the OASIS/Open UIMA

standard [17]. (Standoff markup in XML [18,19] is an important

and common case, as are more explicitly graph-oriented systems

such as GATE, ATLAS or UIMA [4,20,21] – see below.)

In parallel with this analysis and design process, we developed

two related systems, GATE Developer and GATE Embedded,

which this section will detail, along with later arrivals GATE

Cloud and Mı́mir. (For details of GATE Teamware see ,42. or

[22].)

The closest comparable system to GATE is UIMA ,38. [20],

which provides a library which is similar to the core of GATE

Embedded (but with a more explicit type system). UIMA also

provides some graphical facilities for running analysis pipelines

that are a subset of some of those in GATE Developer. Finally,

there is a scaling tool, UIMA Asynchronous Scaleout, which

provides a subset of the some of the services of GATE Cloud.

GATE and UIMA are complementary, and we have developed an

interoperation layer that will run UIMA-based applications within

GATE and vice-versa. An interoperation mechanism based on the

GrAF format [23] is also available.

GATE Developer
GATE Developer is a specialist Integrated Development

Environment (IDE) for language engineering R&D. It is analogous

to systems like Eclipse or Netbeans for programmers, or

Mathematica or SPSS for mathematics or statistics work. The

system performs tasks such as:

N Visualisation and editing of domain-specific data structures

associated with text: annotation graphs, ontologies, terminol-

ogies, syntax trees, etc.

N Constructing applications from sets of components (or plugins).

N Measurement, evaluation and benchmarking of automatic

systems relative to gold standard data produced by human

beings, or to previous runs of variants of experimental setups.

A sophisticated graphical user interface provides access to the

models of the GATE architecture and particular instantiations of

that architecture.

Figure 1 displays analysis results over a page from the Genetics

Home Reference website ,4.. The central pane shows a version

of the source text from which formatting markup has been

GATE’s Open Source Text Analytics
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removed (and converted into arcs in an annotation graph

associated with the document). The left panes detail resources

loaded in the system, including the application being used to

annotate the text (with biomedical named entities in this case) and

the documents under analysis. The right pane lists the types of

annotation that have been applied to the document (for example

anatomical locus or tissue type). The central pane responds to

selection of annotation types with various forms of highlighting

and other visualisations.

GATE Embedded
Underlying GATE Developer (and most of our other systems) is

an object-oriented Java framework called GATE Embedded.

Some of the architectural principles which we adopted when

developing the framework are as follows:

N Neutrality. The framework tries hard to be non-prescriptive

and theory neutral. This is a strength because it means that no

approach to language processing that users favour is excluded,

but it is also a weakness because more restricted and

specialised tools can capture more abstractions about their

target domains, hence:

N Re-use. We minimise the impact of that weakness by

emphasising re-use and interoperation with related systems,

and avoiding reimplementation wherever possible. Thus we

provide diverse XML support, integration with the Protégé

ontology editor [24], the OWLIM semantic repository [25],

the Weka machine learning library [26], the Lingpipe ,36.

and OpenNLP ,37. language analysis pipelines, ABNER

[27], MetaMap [28], GENIA [29], AbGene [30], BioTagger

[31], LinkedLifeData ,13., and the SVM Lite library [32],

to name but a few. (More details on the specifically biomedical

members of this set appear below.)

N Componentisation. Almost everything in GATE is modelled as

a component, and the various component sets are all user-

extendable. This means that all of the functions of the system

can be swapped out, extended or replaced by users and

developers with specific needs.

N Multiple usage modes. Almost all operations are available both

from API (GATE Embedded) and UI (GATE Developer). A

common process is to develop and test using the IDE and then

embed in the target environment using the Java library. In

both cases exactly the same underlying framework is in

operation.

The set of plugins that are integrated with GATE is called

CREOLE, a Collection of REusable Objects for Language

Engineering. Components are defined as Java Beans bundled

with XML configuration, and the overheads imposed by the

model are very small (the minimal component comprises a few

lines of Java code plus a few lines of XML). Components can be

packaged in the same way as other Java libraries and can be

loaded over the network via a URL.

GATE Embedded encapsulates a number of modular APIs for

text processing, which are summarised in Figure 2.

These APIs cover functions including:

N persistence, visualisation and editing

Figure 1. The GATE developer interface.
doi:10.1371/journal.pcbi.1002854.g001
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N a finite state transduction language (JAPE, a Java Annotation

Patterns Engine [33])

N extraction of training instances for machine learning (ML –

methods for automated abstraction of pattern recognition

models from data, see e.g. [34])

N pluggable ML implementations (e.g. Weka, [26], support

vector machines [32], etc.)

N components for language analysis, e.g. parsers, taggers and

stemmers for various languages

N a very widely used information extraction system (ANNIE)

which has been evaluated in comparative events including

MUC, TREC, ACE, DUC, Pascal, NTCIR, etc. [35–39]

N indexing and search tools (including Lucene, Google and

Yahoo plugins)

N a simple API for RDF, OWL and Linked Data

The modularity of the library and the low level of commitment

imposed on its clients has proven flexible enough to prosper for

more than a decade since the release of version 2 (the first Java

version).

GATE Cloud
As long as a decade ago a research team at Merck KGaA

pharmaceuticals ran GATE in a 100-node cluster to process

MEDLINE abstracts. More recently companies like Amazon

began selling computing capacity in the form of Cloud Computing

(detailed in this journal by Fusaro et al. [40]).

We have developed a service at GATECloud.net [41] ,3.

which deploys GATE analysis pipelines and GATE server

products on Amazon EC2 (Elastic Compute Cloud – a popular

cloud computing platform). GATE annotation pipelines provide a

PaaS (Platform as a Service [42]) arrangement: software produced

using GATE Developer/Embedded can be trivially scaled up to

large data volumes. In this way GATE Teamware and Mı́mir on

the cloud provide a SaaS (Software as a Service) arrangement

where responsibility for installation and administration are

removed from the end user.

GATE Cloud is based on a parallel execution engine of

automatic annotation processes (using pooling and model

sharing to minimise the load on individual nodes) and

distributed execution of the parallel engine [41]. Its charac-

teristics include:

N scalability: auto-scaling of processor swarms dependent on

loading;

N flexibility: user-visible parameters configure system behav-

iour, select the GATE application being executed, the input

protocol used for reading documents, the output protocol used

for exporting the resulting annotations, and so on;

Figure 2. GATE embedded APIs. GATE provides a set of Java APIs, called GATE Embedded. This figure summarises the modules provided.
Language resources (LRs) are data-only resources such as lexica, corpora or ontologies. Processing Resources (PRs) are principally programmatic or
algorithmic. Visual resources (VRs) allow users to interact visually with other resources.
doi:10.1371/journal.pcbi.1002854.g002

GATE’s Open Source Text Analytics

PLOS Computational Biology | www.ploscompbiol.org 4 February 2013 | Volume 9 | Issue 2 | e1002854



N robustness: jobs run unattended over large data sets using a

parallelisation system that has been extensively tested and

profiled.

Any errors and exceptions that occur during processing are

trapped and reported, and if the process crashes (e.g. due to

hardware failure), upon restart it will resume execution where it

left off. Some functionality is similar to that of more general

purpose systems such as Hadoop [43], but this is not currently

used.

GATE Mı́mir: A Multi-Paradigm Index Server
Consider the following three types of information retrieval

systems:

N full-text-based, with boolean and proximity operators [44];

N annotation-based, with an underlying graph representation

encoding structured information about text ranges [45];

N ontology-based, with hierarchical conceptual schemas plus

concept instance sets from documents and databases [46].

Systems for high-value content retrieval are likely to combine

elements of all three styles, posing difficult problems of represen-

tation, persistence, indexing and querying. Mı́mir (meaning ‘the

rememberer, the wise one’ in Old Norse) is a Multi-paradigm

Information Management Index and Repository [47] which can

be used to index and search over text, annotations, semantic

schemas (ontologies), and semantic meta-data (instance data). It

allows queries that arbitrarily mix full text, boolean, structural,

linguistic and semantic queries and can scale to terabytes of text.

The systems that Mı́mir supports pose three quite different sets

of requirements for persistence and efficient indexing, search and

access:

N Augmented full text. Having extracted information from

documents, we then need to support the types of boolean full

text queries that are familiar from large numbers of

conventional search systems [44,48,49].

N Annotation graphs. These structures consist of nodes which

are offsets into textual documents, linked by arcs holding type

names and bundles of attribute/value pairs. It is important to

note that the data is graph-structured, so when serialising to

XML mechanisms that are external to the markup tree have to

be employed (often referred to as ‘stand-off markup’).

Therefore XML persistence and query mechanisms (such as

those based on XQuery or XPath) have not addressed the

graph indexing problem.

N Ontology and Knowledge Base. Finally, when we extract

information in relational or hierarchical forms we structure the

schema using an ontology language (and tend to call the result

a ‘knowledge base’, or KB). The ontology represents the data

schema and comprises a hierarchy of class types and a

hierarchy of properties that are applicable to instances of

classes. The instance data represents facts that are known to

the systems and is typically at least partially derived from

semantic annotation over documents. KB data is used to reach

a higher level of abstraction over the information in the

documents which enables conceptual queries such as ‘find all

mentions of drugs that contain acetylsalicylic acid’.

The first and last of these problems were relatively easy to solve.

We use MG4J ,5. [50] for full text indexing, and we use OWL

stored in the OWLIM semantic repository [25] to represent and

query ontological data (via SPARQL, a standard query language

for ontological data [51]). Indexing and querying annotation

graphs is an indexing task which has not been widely treated, and

to this we now turn.

Annotation graphs associate arbitrary feature/value pairs (arcs)

with character offsets in text (nodes). An example is shown in

Figure 3.

GATE Embedded uses these graphs as its native format for

language analysis data, and GATE Developer provides visualisa-

tion and editing facilities for the graphs. For example, Figure 4

shows a document view showing highlighting of particular

annotation types and a list view of the details of those annotations

(start and end offsets, type, and bundle of feature/value pairs).

Two additional system features are relevant to the problem of

indexing and searching annotation data:

N First, GATE includes a finite state transduction language

called JAPE (Java Annotation Patterns Engine) that defines a

rich regular expression language ([52] – a popular and efficient

pattern recognition technique) for matching within annotation

graphs.

N Second, GATE Developer includes ANNIC (ANNotations In

Context), a visualisation tool inspired by the KWIC (Key

Words In Context) tools that have long been a staple of the

lexicographer’s toolbox.

The two features come together to a degree in that ANNIC

allows queries using a JAPE-like language. For example, a query

that searches for person annotations followed by past tense verbs

followed by organisation names is shown in Figure 5.

The challenge that we faced when trying to generalise ANNIC

to indexes in the gigabyte to terabyte range was scaling. Our initial

Figure 3. An annotation graph. In GATE, annotations are encoded by associating features with character offsets, indicating the text to which they
pertain.
doi:10.1371/journal.pcbi.1002854.g003
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implementation (based on Lucene [53]) generated an index disk

footprint on the order of exponential in relation to the source

data, and therefore could not scale beyond very small data sets.

In analysing the problem we considered a range of existing

solutions from the XML, RDBMS and augmented full text

indexing fields and solicited input from each of these commu-

nities at a workshop in May 2008 on Persisting, Indexing and

Querying Multi-Paradigm Text Models, at the Information Retrieval

Facility ,43. in Vienna. Our discussions failed to identify a

pre-existing solution that could be applied directly (XML

indexing and retrieval is biased towards trees; relational

databases are biased towards relations) but we did discover that

the implementation of sequence operators (a mechanism for

representing longer structures than is typical in word-level

indexing systems) in MG4J [50] was sufficiently efficient to

represent a possible solution, and this is how we implemented the

annotation graph support in Mı́mir.

This implementation scaled well. For example we reduced the

disk footprint of the indices as shown in Figure 6. In the figure, the

X axis is the various versions over time, starting with our ANNIC

baseline; the Y axis is disk footprint size. This allowed us to index

document collections in the tens of gigabytes. To scale up to the

terabyte range we implemented index federation, whereby

document sets are partitioned, queries fired against multiple

indices and the results combined. Incremental indexing (the ability

to add to an index after its initial creation) is in development.

Biomedical GATE Components and the Lifecycle
We conclude the first half of the paper with a look at GATE

components that are specific to biomedicine and at how the

Figure 4. Chinese annotations. In GATE’s document view, annotations are shown as highlighted sections of text. This figure shows Chinese text
with highlighted annotations. The annotations are listed at the bottom, showing their type, offsets and features.
doi:10.1371/journal.pcbi.1002854.g004
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various members of the GATE family contribute support to text

analysis lifecycles.

Biomedical Components
Documents from the biomedical domain offer a number of

challenges, including a highly specialised vocabulary, words that

include mixed case and numbers requiring unusual tokenization as

well as common English words used with a domain specific sense.

Many of these problems can only be solved through the use of

domain specific resources.

Many GATE components can be adapted with little or no effort

to help with processing biomedical documents. The Large

Knowledge Base Gazetteer (,12. in [5]) can be initialized

against a biomedical ontology such as Linked Life Data ,13.

[54] in order to annotate many different domain specific concepts.

The Language Identification resource can also be trained to

differentiate between document domains instead of languages,

which could help target specific resources to specific documents.

Also many plugins can be used ‘‘as is’’ to extract information

from biomedical documents. For example, the Measurements

Tagger of [5] can be used to extract information about the dose of

a medication, or the weight of patients in a study.

The rest of this section, however, documents the resources

included with GATE which are focused purely on processing

biomedical documents.

ABNER is A Biomedical Named Entity Recogniser [27]. It uses

machine learning (linear-chain conditional random fields – CRFs)

to find entities such as genes, cell types, and DNA in text. The

tagger finds and annotates entities of the following types: Protein;

DNA; RNA; CellLine; CellType. ABNER does support training of

models on other data, but this functionality is not, however,

supported by the GATE wrapper. For further details please refer

to the ABNER documentation at ,26..

MetaMap (from the National Library of Medicine) maps

biomedical text to the UMLS Metathesaurus and allows

Metathesaurus concepts to be discovered in a text corpus [28]

,33..

Gspell biomedical spelling suggestion and correc-

tion. This plugin wraps the GSpell ,27. API, from the

National Library of Medicine Lexical Systems Group, to add

spelling suggestion annotations. The GSpell plugin has a number

of options to customise the behaviour and to reduce the number of

false positives in the spelling suggestions. For example, ignore

words and spelling suggestions shorter than a given threshold, and

Figure 5. ANNIC (ANNotations In Context). Complex queries are supported, such as a query that searches for person annotations followed by
past tense verbs followed by organisation names, as shown in this figure. The query appears in the third line from the top; the patterns described are
for people annotation followed by organisation annotations. All matching text ranges then appear in the lower half of the tool, with a graphical
representation of the individual annotations concerned in the middle part.
doi:10.1371/journal.pcbi.1002854.g005
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regular expressions to filter the input to the spell checker. Two

filters are provided by default: ignore capitalised abbreviations/

words in all caps, and words starting or ending with a digit.

BADREX (identifying Biomedical Abbreviations using Dynam-

ic Regular Expressions) [55] is a GATE plugin that annotates,

expands and corefers term-abbreviation pairs using parameteri-

sable regular expressions that generalise and extend the Schwartz-

Hearst algorithm [56]. In addition it uses a subset of the inner–

outer selection rules described in the [57] ALICE algorithm.

Rather than simply extracting terms and their abbreviations, it

annotates them in situ and adds the corresponding long-form and

short-form text as features on each. In coreference mode

BADREX expands all abbreviations in the text that match the

short form of the most recently matched long-form–short-form

pair. In addition, there is the option of annotating and classifying

common medical abbreviations extracted from Wikipedia.

MiniChem/Drug Tagger. The MiniChem Tagger is a

GATE plugin uses a small set (around 500) of chemistry

morphemes classified into 10 types (root, suffix, multiplier etc),

and some deterministic rules based on the Wikipedia IUPAC

entries, to identify chemical names, drug names and chemical

formula in text. The plugin can be downloaded from ,28..

AbGene. Support for using AbGene [30] (a modified version

of the Brill tagger), to annotate gene names, within GATE.

AbGene can be downloaded ,34..

GENIA. A number of different biomedical language process-

ing tools have been developed under the auspices of the GENIA

Project ,29.. Support is provided within GATE for using both

the GENIA sentence splitter and the tagger, which provides

tokenization, part-of-speech tagging, shallow parsing and named

entity recognition. For more details on the GENIA tagger and its

performance over biomedical text see [29].

The Penn BioTagger software suite ,35. provides a

biomedical tokenizer and three taggers for gene entities [31],

genomic variations entities [58] and malignancy type entities [59].

All four components are available within GATE via the

Tagger_PennBio plugin.

MutationFinder ,30. is a high-performance IE tool

designed to extract mentions of point mutations from free text

[60]. A point mutation, or single base substitution, is a type of

mutation that causes the replacement of a single base nucleotide

with another nucleotide of the genetic material, DNA or RNA. In

a blind test data, MutationFinder achieved a precision of 98.4%

and a recall of 81.9% when extracting point mutation mentions.

NormaGene ,31. is a web service, provided by the BiTeM

group ,32. in Geneva. The service provides tools for both gene

tagging and normalization, although currently only tagging is

supported by this GATE wrapper.

Linked Life Data (LLD, ,13. [54]) is an aggregation of

several existing taxonomic and terminological resources for life

sciences represented in the OWL ontology language [61]. (Sources

include: Uniprot, Entrez-Gene, iProClass, the Gene Ontology,

BioGRID Complete, the NCI Pathway Interaction Database, the

Cancer Cell Map, Reactome, BioCarta, KEGG, BioCyc, the

NCBI Taxonomy.) Several resources are modelled using schemata

from the BioPAX data exchange language [62]. The outcome is a

means to access all the resources via a single mechanism. A key

challenge for such aggregated data services is performance – the

data involved is in the billions of statements – but LLD scales well

to these sizes via the underlying semantic repository, which is

specifically optimised for the large scale.

Organism Tagger [63] report a tagger for species names, ‘a

useful step for many other analysis tasks; in particular it provides

for species-specific queries to the literature and can help in

disambiguating other biological entities in a document, such as

proteins’ according to the authors, and uses a GATE analysis

pipeline. This pipeline identifies species, their genus and strain

parts, and normalises forms such as abbreviations and acronyms to

the organisms normal scientific nomenclature. The normalised

form is then matched against the NCBI Taxonomy Database,

adding a URL to its web page. More details: ,41..

Figure 6. Mı́mir index size. As this figure shows, in later versions of Mı́mir, software improvements meant that the index could be reduced in size,
allowing much larger document collections to be indexed.
doi:10.1371/journal.pcbi.1002854.g006
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The Text Analysis Lifecycle
As discussed in the introduction, text analysis projects typically

follow certain patterns, or lifecycles. A central problem is to define

the extraction task with sufficient precision that human annotators

can perform the task with a high level of agreement (this level

represents a ceiling to machine performance) and to create high

quality example data with which to drive development and

measurement of the automatic analysis pipeline. It is common to

use double or triple annotation, where several people perform the

extraction task independently and we then measure their level of

agreement (the Inter-Annotator Agreement, or IAA) to quantify and

control quality of this data.

To summarise the process, the steps that typically compose the

text analysis lifecycle (and the GATE tools that are relevant at

each step) are as follows:

1. Aggregate the text collection that you need to provide

additional access to, or abstraction over (scientific papers,

patient records, technical reports, clinical trials documents,

emails, tweets, transcripts, blogs, comments, acts of parliament,

and so on and so forth). This is the corpus or collection of corpora

for the project.

2. Develop a structured description of interesting things in the

text. This may be as simple as a corporate telephone directory,

or a set of drug names, or a chemical taxonomy, or something

from the Linked Data cloud [64], or from Linked Life Data

,13.. This forms the ontology for the project.

3. Specify the extraction task and verify the specification. Use

GATE Teamware (or, for small projects, GATE Developer) to

manually mark up a gold standard example set of annotations of

the corpus (1.) relative to the ontology (2.). (Inter-Annotator

Agreement tools help drive refinement of the task specification;

bootstrapping tools, where we use a combination of manual

and automatic methods, help reduce the cost of the manual

work.)

4. Prototype the text analysis pipeline. Use GATE Developer to

build a semantic annotation pipeline to do the annotation job

automatically and measure performance against the gold

standard. (If you have enough training data from (3.) or

elsewhere you can use Developer’s machine learning facilities

here.)

5. Deploy and verify the analysis system. Take the pipeline from

(4.) and apply it to your corpus using GATE Cloud (or embed

it in your own systems using GATE Embedded). Use it to

bootstrap more manual (now semi-automatic) quality assurance

work in Teamware or Developer.

6. Populate an index server. Use GATE Mı́mir to store the

annotations relative to the ontology in a multiparadigm index

server.

7. Expose the results to end-users. Either:

N export the data for analysis in statistics packages, databases,

etc., or:

N write a domain-specific user interface to go on top of Mı́mir,

or integrate it in your existing front-end systems via Mı́mir’s

RESTful web APIs.

Certain steps or sequences of steps are often iterated in the

manner of agile development methods, and integral testing also

mirrors agile practice [65,66].

The end result is search (or abstraction) that applies your

annotations and your ontology to your corpus, but the software

products are only part of the outcome. We also attain a robust and

sustainable process for maintaining the system and for coping with

changing information needs and/or changing text. In each case we

use manual or semi-automatic annotation and automated mea-

surement and regression testing to ensure stability of existing

analyses or to structure development of new analyses.

Results

In this section, we give three examples of biomedical problems

solved using GATE. Firstly, we show how GATE has been used to

adjust association priors using published literature, thus facilitating

the discovery of gene associations. Secondly, we show GATE being

used to extract data from free text fields in clinical records, making a

large amount of new data available for analysis and improving the

accuracy and coverage of existing data. Finally, we show how

GATE has been used to annotate drug names in patents to provide

enhanced search capabilities. These examples cover typical use

cases of text analysis: the first two make new abstractions over

textual data; the third provides new search and navigation facilities.

Facilitating Gene-Disease Association Studies
As noted above, we begin with an example which is

representative of uses of text analysis to perform abstraction over

textual data in order to support some other process – in this case

gene-disease association studies.

It has been hypothesised that genetic factors play a strong role in

susceptibility to disease, and that in future targeted pharmaceu-

ticals will become available that are tailored to our individual

genetic particularities. A substantial body of work has addressed

the identification of associations between mutations (usually SNPs

– single nucleotide polymorphisms) and diseases. It is hoped that

these associations will inform new pharmaceutical interventions

against the diseases concerned.

In recent years gene-disease association researchers have often

moved from a candidate gene approach (where genes are selected

and tested based on prior knowledge and hypotheses) to a genome-

wide approach, where many or all common genetic variants are

tested, with no (or fewer) prior assumptions [67].

In a typical Genome Wide Association Study (GWAS, e.g. [68]),

experimental data is collected on the associations between several

millions of SNPs and the disease under study. These associations

are expressed as odds ratios (OR) calculated from SNP presence in

patients relative to controls. The numbers of SNPs examined

mean that large numbers of patient and control samples are

needed to make the analysis useable and reliable. With even a few

thousands of patients and controls, statistical probability thresholds

must be in the order of 10{6 or less before significance can be

established for an individual SNP. In addition, most studies do not

make use of any previous knowledge that might have been

published about particular genes and the disease.

Working with the WHO’s cancer epidemiology lab in Lyon,

France (IARC, ,6.), we have developed a GWAS method that

consistently ranks susceptibility SNPs significantly higher [69,70].

This method – Adjusting Association Priors with Text (AdAPT) –

searches research paper abstracts for prior knowledge on each

SNP. This prior knowledge is in the form of counts of terms

related to the disease under study, in papers that discuss genes in

the same region as the SNP. For a GWAS of a particular disease,

domain experts define a list of terms associated with the disease.

For example, terms for anatomical sites and environmental factors

associated with the disease may be selected. For each SNP, we find

research papers related to genes in the same region as that SNP,

and find the frequency of each term in those papers.
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These lexical counts are combined with the experimental OR in

a Bayesian model – Bayesian False Discovery Probability (BFDP

[71]). For each SNP, the OR is used to calculate the posterior

probability, and the lexical counts are used to calculate the prior

probability. Experimental results for SNPs will be given an

increased relevance where there is an increased frequency of

search terms associated with the SNP. For example, we could

analyse the results of a GWAS on lung cancer patients with

AdAPT, using ‘‘smoking’’ as one of our search terms. Research

papers that mention that a gene has been associated with the buzz

experienced on smoking will be taken into account, when

calculating the relevance of experimental results about SNPs in

the region of this gene.

Such prior knowledge about genes is buried in the text of

scientific papers, and so to make use of it in BFDP we use text

mining to find those papers that discuss particular genes, diseases,

anatomical loci, drugs and so on. Initial post-hoc experiments with

historical data [72] demonstrated that the technique could have

been used to find several SNPs associated with lung cancer. One

SNP, for example, was ranked 124th using OR alone. With BFDP

and text mining, it was ranked 10th and would have been

considered highly relevant for further study. This gene, along with

several others, is shown in Table 1, where it can also be seen that

using the AdAPT method makes rankings much more robust to a

reduction in the amount of data used. A similar effect was found

when examining a gene involved in several mechanisms relevant

to kidney cancer. Typically, the technique requires half the data

used in a typical GWAS to achieve the same results (which implies

a possible cost saving of 50% on wet lab work).

More recently, we have applied the technique to new data. A

gene involved in the regulation of alcohol metabolism was poorly

ranked for head and neck cancer using OR alone, but highly

ranked when BFDP and text mining were used. Based on this re-

ranking, the gene was studied further and has now been shown to

have an association with head and neck cancer [70].

The AdAPT method was motivated by the fact that a large

proportion of highly ranked, yet statistically insignificant, SNPs in

GWAS studies reside near potential candidate genes. GATE was

used to provide a framework in which different methods of mining

the literature could be experimented with, from simple surface

processing of text, to matching text against ontologies and

terminologies such as those found in UMLS using MetaMap

[28]. Search terms were indexed in GATE Mı́mir, which will

enable future experiments combining prior knowledge in both text

and in structured knowledge such as ontologies.

A public demonstration service of the text analysis system is

available online, see ,7..

Clinical Records Mining for Evidence-Based Medicine
SLaM, the South London and Maudsley Hospital, covers a

population of 1.1 million across a large area of South London.

Their mental health unit has 35,000 patients, whose treatment

records are stored in an Electronic Health Record (EHR) system

containing some 175,000 records. The EHR system supports

5,000 active users.

SLaM is host to the UK National Institute of Health Research

Biomedical Research Center (BRC) for Mental Health. The BRC

have built the largest mental health case register in Europe, using

data extracted from the SLaM EHR. This case register is known

as CRIS, Case Register Interactive Search system [73]. Data in

CRIS is de-identified and indexed for search via a web interface

and standard database query languages. Access to CRIS is

restricted by an institutional policy framework.

Table 1. Comparison of P-Value and BFDP ranking.

SNP ID Locus
Proportion of data
samples P-value BFDP

Rank Power Rank Power

rs1051730 15q25.1 100% 2 - 2 -

75% 10 80% 8 81%

50% 959 17% 793 18%

rs2736100 5p15.33 100% 77 - 8 -

75% 2359 4% 222 31%

50% 17989 3% 1350 16%

rs3117582 6p22.33 100% 124 - 10 -

75% 2717 6% 184 35%

50% 20033 3% 1038 13%

rs401681 5p15.33 100% 74 - 6 -

75% 2775 8% 249 32%

50% 25446 2% 1866 10%

rs4324798 6p22.1 100% 4 - 4 -

75% 844 25% 545 28%

50% 7495 3% 6178 3%

rs8034191 15q25.1 100% 1 - 1 -

75% 4 87% 3 89%

50% 502 24% 435 28%

By adding prior knowledge using the AdAPT method, genes robustly implicated in lung cancer are shown to rank more highly than based on p-value alone. This means
that they could have been flagged for further investigation sooner, had the method been used.
doi:10.1371/journal.pcbi.1002854.t001
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The BRC performs a central research function for policy

making (at both regional and national level) and medical audit

(informing evidence-based and translational medicine). Typical

research questions tackled by BRC epidemiologists might include:

N Is there a test for those with Alzheimer’s disease that can show

if drugs would be the best treatment?

N Do some drugs for schizophrenia affect physical health, e.g.

diabetes?

N Do people’s home living arrangements affect how long they

spend as inpatients, receiving care in hospital wards?

BRC researchers use a variety of data sets and tools in their

work, often linking and merging different data, and employing a

wide variety of statistical analyses. CRIS is only one tool in this

process, but a very useful tool in that it provides an unrivalled data

set at the level of the individual patient and health care episode.

CRIS contains much structured data from the EPR. In many

cases, however, useful information is present only in the free text

fields of CRIS, which contain a mixture of correspondence from

SLAM clinicians to primary care physicians, and short notes made

during clinical work. ‘Clinicians, and mental health clinicians in

particular, are in love with free text’, notes Matthew Broadbent,

BRC CRIS manager (during ‘GATE for Life Sciences: extracting

information from electronic health records’, a talk at the GATE

training course of May 17th 2011). CRIS contains some

11,000,000 free text field instances in its records. Even though

computer literacy is increasing amongst clinicians (partly as

younger practitioners move upwards through the system), still it

seems likely that this ‘love affair with free text will be almost

impossible to break’, at least in the medium term. Medics often

cite lack of time during clinical practice as a reason that large

quantities of data that is highly significant for clinical practice is

not present in the structured record at all. Additionally, the free

text portion of the record contains letters to primary care

physicians, and so has a legal status in the UK that is not afforded

to the structured record. Examples of the value of the free text

record over the structured record at SLaM include:

N smoking status is only ever recorded in the free text fields;

N some diagnoses are only present in the free text, e.g. 800 cases

of Alzheimers were identified from a set of 4900 records, where

the diagnosis was not recorded in the structured data;

N for a widely used score of cognitive ability (MMSE – see

below), a query to the structured field returned 5700 hits;

adding a keyword search over the free text fields returned an

additional 48,750 hits.

Clearly, if the free text is ignored, researchers will miss a large

portion of the data. Starting in 2010 the BRC began a programme

of work with GATE to extract data from their free text records.

The BRC uses GATE to create extraction pipelines for a variety of

textual entities and events. The set of entities and events extracted

are not fixed. They are shifting and evolving, as new research

questions emerge, and as the possibilities of information extraction

are explored by researchers. Specific pipelines are developed in

response to the needs of individual research projects, although

many find re-use in other projects. GATE is therefore seen as an

additional research tool, rather than as a black box application

that extracts a limited set of entities. The BRC sees GATE as an

information extraction capability rather than as a single applica-

tion: they use the GATE process as described above to develop

each new application, making use of manual annotation facilities

to create evaluation corpora, and GATE’s quality control tools to

measure progress. Each pipeline is developed through up to 6

iterations of definition, prototyping, and accuracy measurement.

Applications in use include ones to extract patient smoking status,

diagnosis, social care, level of education, and medications.

We describe one such application here, the extraction of Mini

Mental State Examination (MMSE) results. MMSE is a test of

cognitive ability, scored out of 30, and frequently used in cases

such as memory loss or dementia. There are many occurences of

MMSE reported in the CRIS free text data, for example ‘MMSE

done on Monday, score 24/30’. The extraction task was to find

MMSE assessments described in the text, together with their

scores and dates. Complications in the extraction of this data

include:

N date normalisation relative to proximate dates in the free text,

or as a last resort the document instance date (e.g. what date

does ‘Monday’ refer to in the above example?)

N conjunctions, negations, coordinations etc. (e.g. ‘patient X

scored Y/30 in November then Z/30 in December’)

During development of the MMSE application, BRC decided

to favour precision over recall for this task. The output of MMSE

extraction is used to create MMSE time series from the multiple

documents held for each individual patient, and they calculate that

missing some occurences of MMSEs within these series does not

negatively impact the research conclusions that they are drawing

from the analyses, whereas false positives would be more

problematic.

MMSE extraction task guidelines were written by clinical

domain experts, and refined iteratively while using them for

manual annotation of MMSE in example texts. The MMSE

application was developed over four iterations. At the end of each

iteration, the application was run over unseen evaluation texts.

The annotations in these texts were then corrected by domain

experts, and standard information extraction evaluation metrics

used. Precision was used to give the proportion of the annotations

created by the system that are correct, compared to the human

sources. Recall was used to give the proportion of the human

annotations that the system had found. (See e.g. [3] for a fuller

explanation of these evaluation measures.) The corrected anno-

tations were then made available, as development data for creation

of the next iteration of the application. After four iterations, 224

documents containing 270 MMSE events had been used.

Evaluation against the final set of unseen evaluation texts gave a

precision of 0.89, and a recall of 0.94 in correspondence texts, and

a precision of 0.85 and a recall of 0.85 in short note texts. The final

application was also evaluated against a set of 1456 manually

extracted MMSE events from 6236 documents. This evaluation

gave a precision of 0.83 for the MMSE score, and 0.79 for the

MMSE date. In the case of MMSE, and of GATE applications for

the extraction of other events in CRIS text, it has been possible to

attain an accuracy that is sufficient to support drawing conclusions

for policy and audit purposes.

When the MMSE application was run over the full CRIS data

set, a post-processing step was added that makes a number of

heuristic sanity checks (using domain rules) against the structured

data and filters out problematic results from the extraction engine.

For example, MMSEs are always scored out of 30 – so a

numerator of more than 30 or a denominator that isn’t 30

indicates an error (either in the notes themselves or in the

extraction components). Similarly, a date given for an examination

that is in the future relative to the parent record date must be

incorrect. Deduplication may also be performed.
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Results from running the MMSE application over the full CRIS

data set illustrated a further point. The MMSE extraction system

found 58,000 MMSE scores out of 48,000 relevant free text

documents. After post-processing, 35,000 instances remained.

Following further data checking (including comparison between

the structured records and the free text extraction data), and

contrary to initial expectations, samples of data suggested that the

MMSE data being extracted from the free text was more accurate

than the structured data (i.e. the coding quality of the database

MMSE data can be low). It appears that in this case, the structured

record may be less accurate than that recorded in the free text, and

where a high-precision extraction system can be built, even the

text analysis results may be more accurate than the structured

data.

For the MMSE extraction task, computational resources

deployed were on the order of 40 processor nodes for 24 hours

(running as a batch process of 11,000,000 XML files dumped from

the database). The individual jobs are run using GATE Cloud

Paralleliser, the server-level infrastructure from GATE Cloud as

described above.

Drug-Related Search in Patent Data
Our third (and last) example is motivated by three interlocking

concerns. First, patents are currently a relatively opaque and

under-exploited resource for scientific exploitation. On the one

hand a globally significant amount of research work is

encapsulated in patent documents (and in many cases these

documents are the only source of publication, due to commercial

confidentialty constraints [74]), on the other hand access to and

analysis of the patent record is typically problematic and partial

[75]. The exposure of quantitative biomedical data derived from

patents of the type discussed below is one way to ameliorate this

concern.

Second, search of high-value content is moving beyond ‘bag of

words’ methods and towards semantic and conceptual query and

navigation methods [76]. Patents are a valuable resource in many

contexts, not least the pharmaceutical, and the provision of

additional search modalities using biomedical taxonomic struc-

tures over patent data is in demand in a variety of life science

contexts.

Thirdly, The text mining part of this picture is also likely to be

applicable to a wide range of experiments where abstraction over

the published research record can be used to adjust probabilistic

models – such as the cancer epidemiology work reported above.

As part of a research programme on new methods for searching

patent data [47,77] we developed (in conjunction with partners) a

semantic search capability that combines the Federal Drug

Administration’s (FDA) Orange Book ,9. with UMLS (the

Unified Medical Language System, ,10.) terms. This section

describes the data integration approach used and the search

application constructed. This use case is representative of

applications of text mining in life sciences where the objective is

to support additional search modalities (for example, facetted or

conceptual queries).

Advances in molecular biology and genetics are now commonly

based on petabytes of raw genome and protein sequence data. In

organising and interpreting these raw data there has been a

parallel growth in life sciences literature, and in databases,

taxonomies, ontologies, knowledge bases, and other types of

knowledge source. With respect to literature, consider that

MEDLINE, the primary life sciences abstract database, currently

stands at 21 million abstracts, and is growing at the rate of 600,000

abstracts a year. With respect to knowledge sources, consider that

there are currently over 1000 ontologies, data- and knowledge-

bases in the life sciences, and that typical gene databases contain

over 400 million triples when in RDF form (making them some of

the largest single semantic data repositories available) [54].

A number of problems arise which a combination of data

integration, information extraction and text mining can sometimes

help solve. As it is now impossible to read all relevant literature in

a sub-area, and difficult to search using traditional IR techniques,

there is increasing demand for IR methods that integrate the

various knowledge sources and literature, allowing novel experi-

mental setups such as that described above. Several projects exist

which attempt to provide ‘mashups’ of knowledge sources, and

which link knowledge sources to semantic annotation of the life

sciences literature. Some of these attempts have also led to

proposals for standard approaches to the use of RDF in the life

sciences.

GATE includes support for exploiting this type of structured

data in several ways, including:

N GATE Embedded includes a simple API for accessing

ontological data (represented in RDF or OWL). This API is

very basic – it doesn’t replace other more comprehensive

efforts, but it does provide a level of functionality appropriate

for text processing applications without the complexity that

arises from comprehensive support of the relevant standards.

See Chapter 14 of the GATE User Guide ,11. [5] for more

details.

N Similarly GATE Developer has simple visualisation and

editing tools for working with ontologies.

N CREOLE (the GATE plugin set) includes a Large Knowledge

Base Gazetteer for direct annotation of concept lexicalisations

from the OWL store in text. See the GATE User Guide ,12.

for more information.

When working with life sciences data, we often use the Linked

Life Data OWL repository (LLD, ,13. from Ontotext ,14. –

see above), an RDF data repository that integrates around four

billion statements from existing databases, taxonomies and

ontologies. Using GATE’s ontology tools and the LLD knowledge

base we developed a rich search application for drug search over

patent data, to which we now turn.

The core of the approach is to semantically annotate patents

with references to drugs, their ingredients, the organisations that

have developed them, their typical dosages and routes of

administration, and so on. On top of the resultant semantic index

(in GATE Mı́mir) we then expose structured and co-occurrence

based visual retrieval interfaces.

An ontology was first created capturing the classes and

relationships evident from the structure of the data about patented

drugs present in the FDA’s Orange Book. This ontology was then

aligned with a basic upper level ontology to reuse named entity

classes and relationships, some of which are directly applicable to

the domain (organisation, person, document, patent, location, and

their corresponding relationships). The two ontologies, thus

aligned, served as the conceptual schema for transformation of

the drug descriptions from their Orange Book form into instances

in the semantic database. In this way, the semantic repository was

populated with:

N drug instances with their corresponding names;

N active ingredients or chemical compounds;

N the different dosage forms and strengths of the ingredients;

N routes of administration;

N target;
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N the patent applicant;

N approval and expiration dates.

A simple semantic annotation pipeline was developed recognis-

ing mentions of known drugs, ingredients, dosage forms, and

others, in the patent documents. The annotations link these

mentions to instances modeled in the semantic database.

Additionally, bibliographic metadata was transformed into docu-

ment level metadata and passed for indexing along with the textual

content and the semantic annotations.

The retrieval and navigation capabilities were based on a

unified semantic index back-end based on Mı́mir. The retrieval

capabilities exposed through the visual interfaces include:

N Predefined structured queries: looking for drugs with a

particular route of administration, or the drugs by a specific

applicant, etc. These are expressed as path pattern restrictions

on the graph of the semantic index and the results are either

entities or documents referring to these entities.

N The class taxonomy of the FDA ontology can be browsed and

examined.

N Co-occurrence based navigation and retrieval interfaces. The

co-occurrence of entities in the same context is the key

navigation and retrieval restriction paradigm in this case,

exposed through facets listing entities from a particular class.

The system can be tuned to show the entities in lexicographic

order, or order based on their frequency in the current

selection of patents.

N Traditional full text boolean search is also available, enriched

with restrictions over metadata fields and document structure.

N Trend analysis is available based on analyzing how frequency

of entity mentions changes through the different points in time

associated with the documents. This results in interactive

timelines of entity popularity on a previously selected set of

patents, time interval and display granularity. Thus, one can

examine how, for example, the frequency in patent applica-

tions of references to ibuprofen and aspirin change through

time. The different points forming the trend graphic lead

directly to temporally restricted document sets forming the

corresponding frequency of reference.

For example, the co-occurence faceted search interface (where

each column represents a different semantic type extracted from

the documents) is shown in Figure 7.

A public example service is available online at ,16..

Availability and Future Directions

Dataset S1 bundled with this paper contains a distribution of

GATE; dataset S2 contains the GWAS system described above.

GATE Developer and GATE Embedded are available under

the Lesser GNU licence (LGPL, ,17.). To download GATE

Developer/Embedded, see ,18.. The software will run any-

where that supports Java 6 or later, including Linux, Mac OS X

and Windows platforms. We don’t run tests on other platforms,

but have had reports of successful installs elsewhere. Documen-

tation includes a 650 page User Guide ,19. [5] and thousands of

pages of API and other documentation ,20..

GATE Teamware is available under the Afero GNU licence

(AGPL, ,21.) and on Amazon’s server farms via GATE Cloud.

GATE Cloud is available online, see ,3.. It is a simple matter

to access the software as a service, and set up a project using the

ready-made analysis services or run your own custom analysis

pipelines.

Figure 7. Co-occurence search. Faceted search allows users to apply multiple filters – here we have selected Hydralazine Hydrochloride as an
Active Ingredient and started typing ‘AST’ in the Applicant column.
doi:10.1371/journal.pcbi.1002854.g007
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GATE Mı́mir is available under the Afero GNU licence (AGPL,

,21.). It is downloadable from SourceForge ,22. and available

as a service on GATE Cloud. Documentation is available in the

form of a Users’ and Implementors’ Guide ,23..

Future development of GATE is driven by its user and

developer community. New members can join this community

via the mailing list, Facebook or LinkedIn groups. The software is

hosted on SourceForge ,24. where users may report bugs,

request features and contribute patches. For those with a track

record of contributing good code to the project, committer

privileges are granted, allowing direct contribution to the

codebase.

An easy way to add new functionality to the project and share it

with other users is to make a plugin. GATE Developer/Embedded

provides a flexible structure where new resources can be plugged

in very easily. Full details of how to go about making and

contributing a plugin can be found in Chapter 12 of the User

Guide ,25..

Links

,1. http://gate.ac.uk/

,2. http://gate.ac.uk/gate/doc/plugins.html

,3. http://gatecloud.net/

,4. http://ghr.nlm.nih.gov/

,5. http://mg4j.dsi.unimi.it/

,6. http://www.iarc.fr/

,7. http://services.gate.ac.uk/lld/gwas/service/

,8. http://www.slam.nhs.uk/research/biomedical-research-

centre/brc-home

,9. http://www.accessdata.fda.gov/scripts/cder/ob/default

.cfm

,10. http://www.nlm.nih.gov/research/umls/
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