Blog
Big Data: Análisis para Cadenas de Comida Rápida (Caso de Estudio)
Los modelos predictivos y la analítica de movilidad son dos herramientas importantes que ofrece el Big Data. Éstas pueden ser utilizadas por las cadenas de comida rápida para mejorar sus procesos de toma de decisiones, entender el mercado y detectar nuevas oportunidades de negocio.
En este artículo profundizaremos en un caso de estudio, el cual consistía en realizar un análisis completo dentro de una ciudad clave. Nuestro cliente quería analizar el desempeño de su cadena de comida rápida para después compararlo contra su competencia.
Igualmente, necesitaba identificar nuevas ubicaciones clave para continuar con su plan de expansión en toda la ciudad.
Mediante datos internos y externos pudimos analizar:
Nota: Nuestro cliente opera una cadena de restaurantes que ofrece tres tipos de establecimientos («Restaurante», «Pick and Go» y «Servicio Express»).
Le puede interesar leer: ¿Cómo usar analítica de movilidad en el negocio fast-food?
Analizando las áreas de la ciudad con mayor concentración de personas
A través del uso de analítica de movilidad, logramos identificar qué zonas de la ciudad cuentan con mayor volumen de personas y cuántos locales “Pick and Go” se ubican dentro de éstas.  
Otro dato que solicitó el cliente fue conocer quiénes de sus competidores también se encuentran dentro de este tipo de zonas.
Un punto importante del análisis consistió en identificar zonas con alta concentración de usuarios sin presencia de establecimientos de comida rápida. Nuestro cliente identificó  tres opciones de ubicación con características interesantes.
Analizando las áreas de la ciudad con las concentraciones vehiculares más altas
Nuestro cliente tenía como prioridad identificar nuevas ubicaciones para establecimientos de “Servicio Express”. Una de sus condiciones fue que estos establecimientos debían ubicarse cerca de vías con altas concentraciones de tráfico vehicular.
Nuestro cliente encontró una avenida con alto potencial para colocar varios establecimientos (Con la ventaja de que no había presencia de otras cadenas de comida rápida).
Áreas de la ciudad cubiertas por los establecimientos de la  marca
Como parte de su estrategia de expansión, el cliente pretendía cubrir toda la demanda de la ciudad a través de sus diferentes opciones de establecimientos. Utilizando datos geoespaciales, se logró identificar aquellas áreas no cubiertas por la marca.
Las áreas verdes están “totalmente cubiertas” por la marca, las áreas amarillas están “parcialmente cubiertas” y las áreas rojas están “no cubiertas”. Los puntos rojos representan las distintas ubicaciones de los establecimientos.
Análisis de ingreso socioeconómico y demografía por área
A diferencia de los locales “Pick and Go” y “Servicio Express”, los “Restaurantes” están dirigidos a un mercado exclusivamente de clase media.  Es por ello que nuestro cliente necesitaba considerar el nivel de ingresos por área para determinar la ubicación de sus nuevos restaurantes.
Las áreas amarillas representan zonas con un nivel de ingresos medio. Nuestro cliente tomó como referencia estas zonas para decidir dónde colocar sus nuevos «Restaurantes».
Desempeño y pronósticos de ventas  de los distintos establecimientos de la marca
A través de modelos predictivos, podemos analizar el desempeño de cada establecimiento para generar un pronóstico de ventas.
Nuestro cliente necesitaba anticipar resultados e identificar aquellos locales con un mal desempeño en ventas. Para este caso, generamos un pronóstico para cada uno de los tres tipos de establecimientos  (El gráfico muestra el análisis para restaurantes).
Información valiosa para tomar decisiones inteligentes
Como puede ver, la ciencia de datos es crucial para el éxito de una cadena de comida rápida. Nuestro cliente pudo tomar decisiones complejas de forma más rápida y sencilla basándose en datos confiables y precisos.
En PREDIK Data-Driven contamos con más de 14 años de experiencia ayudando a empresas líderes en Big Data.
Canal Tradicional: ¿Cómo medir el potencial de ventas de su producto en tiendas de abarrotes?
18 de julio de 2022
El canal tradicional se caracteriza por ser complejo, sobre todo en temas de comercialización y dist...
Estudios de Mercado con Big Data: ¿Dónde abrir un laboratorio clínico?
29 de agosto de 2022
Uno de los retos más grandes al colocar un nuevo laboratorio es elegir la ubicación correcta. No sól...
Análisis de movilidad: La clave ganadora para los bancos
21 de julio de 2022
La dinámica entre los bancos y sus clientes se ha ido modificando enormemente. En la era de la exper...
¿Cómo utilizar ciencia de datos para resolver problemas complejos?
1 de septiembre de 2022
El campo de estudio conocido como ciencia de datos consiste en trabajar con enormes cantidades de da...
La ciencia de datos al rescate de las empresas
21 de julio de 2022
“Las empresas que no aprovechen las ventajas del Big Data perderán su posicionamiento e incluso algu...
PREDIK Data-Driven es una firma de investigación con más de 12 años de experiencia en el desarrollo de soluciones para empresas y gobiernos de América Latina.
Nuestra especialidad es la conceptualización y diseño de soluciones de Inteligencia de Mercados a la medida de nuestros clientes, modelos de simulación financieros, económicos y comerciales, para la evaluación de diferentes escenarios ante la toma de decisiones.
Siguenos en
Idiomas
Copyright © 2022 PREDIK Data-Driven. All Rights Reserved
Políticas de cookies
Política de Privacidad
Contacto
Do not sell my info
Sitemap
Utilizamos cookies para asegurarnos de brindarle la mejor experiencia en nuestro sitio web. Si continúa utilizando este sitio, asumiremos que está satisfecho con él.
OkPolítica de Privacidad
EspañolEnglishPortuguês