Hummingbird foraging and the relation between bioenergetics and behaviour

Comp Biochem Physiol A Mol Integr Physiol. 2002 Oct;133(2):335-43. doi: 10.1016/s1095-6433(02)00165-4.

Abstract

Because of their small size and expensive mode of flight, hummingbirds display some of the highest known mass-specific rates of aerobic metabolism among vertebrates. High enzymatic flux capacities through pathways of carbohydrate and long-chain fatty acid oxidation indicate that either substrate can fuel flight. Although hummingbirds are known to rely on fat to fuel migratory flight, short foraging bouts are fueled by the oxidation of carbohydrate, not fat. This allows birds refueling at meadows during migration to deposit fat at higher rates and avoids the energetic inefficiency that results from synthesizing fat from dietary sugar, and then breaking down the fat to fuel foraging flight. On cold mornings in subalpine meadows, refueling hummingbirds achieve net energy gain despite the high energetic costs of thermoregulation and flight. In doing so, they sustain the highest known time-averaged metabolic rates among vertebrates. However, low sucrose concentrations, provided in volumes large enough to allow the maintenance of energy balance at low temperature, result in energy deficit and mass loss. The problem of disposing of dietary water at low ambient temperature when intake rates are elevated suggests that the kidneys may be involved in establishing the upper limit to intake rates and, therefore, maximum sustained metabolic rates. It is suggested that hummingbird behaviour and metabolism have coevolved to maximize net energy gain. Further, the energetics of hummingbird thermoregulation and flight may have influenced the evolution of sucrose content in floral nectar.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Behavior, Animal
  • Birds / physiology*
  • Body Temperature Regulation / physiology
  • Diet
  • Energy Metabolism
  • Feeding Behavior
  • Flight, Animal / physiology
  • Muscles / physiology