Neural mechanisms of language comprehension: challenges to syntax

Brain Res. 2007 May 18:1146:23-49. doi: 10.1016/j.brainres.2006.12.063. Epub 2006 Dec 23.

Abstract

In 1980, the N400 event-related potential was described in association with semantic anomalies within sentences. When, in 1992, a second waveform, the P600, was reported in association with syntactic anomalies and ambiguities, the story appeared to be complete: the brain respected a distinction between semantic and syntactic representation and processes. Subsequent studies showed that the P600 to syntactic anomalies and ambiguities was modulated by lexical and discourse factors. Most surprisingly, more than a decade after the P600 was first described, a series of studies reported that semantic verb-argument violations, in the absence of any violations or ambiguities of syntax can evoke robust P600 effects and no N400 effects. These observations have raised fundamental questions about the relationship between semantic and syntactic processing in the brain. This paper provides a comprehensive review of the recent studies that have demonstrated P600s to semantic violations in light of several proposed triggers: semantic-thematic attraction, semantic associative relationships, animacy and semantic-thematic violations, plausibility, task, and context. I then discuss these findings in relation to a unifying theory that attempts to bring some of these factors together and to link the P600 produced by semantic verb-argument violations with the P600 evoked by unambiguous syntactic violations and syntactic ambiguities. I suggest that normal language comprehension proceeds along at least two competing neural processing streams: a semantic memory-based mechanism, and a combinatorial mechanism (or mechanisms) that assigns structure to a sentence primarily on the basis of morphosyntactic rules, but also on the basis of certain semantic-thematic constraints. I suggest that conflicts between the different representations that are output by these distinct but interactive streams lead to a continued combinatorial analysis that is reflected by the P600 effect. I discuss some of the implications of this non-syntactocentric, dynamic model of language processing for understanding individual differences, language processing disorders and the neuroanatomical circuitry engaged during language comprehension. Finally, I suggest that that these two processing streams may generalize beyond the language system to real-world visual event comprehension.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Communication
  • Comprehension*
  • Evoked Potentials*
  • Humans
  • Language*
  • Semantics*
  • Speech