My Library


   
Limit search to available items
519 results found. Sorted by relevance | date | title .
E-Book
Title Atomic-scale modelling of electrochemical systems / edited by Marko M. Melander, University of Jyväskylä, Department of Chemistry, Jyväskylä, Finland, Tomi T. Laurila, Aalto University, Electrical Engineering and Automation, Espoo, Finland, Kari Laasonen, Aalto University, Chemistry and Materials Science, Espoo, Finland.

Description 1 online resource : illustrations (some color)
Note Includes bibliographical references and index.
Contents <P><b>Part I </b><b>1</b></p> <p><b>1 Introduction to Atomic Scale Electrochemistry </b><b>3<br /></b><i>Marko M. Melander, Tomi Laurila, and Kari Laasonen</i></p> <p>1.1 Background 3</p> <p>1.2 The thermodynamics of electrified interface 4</p> <p>1.2.1 Electrode 6</p> <p>1.2.2 Electrical double layer 7</p> <p>1.2.3 Solvation sheets 8</p> <p>1.2.4 Electrode potential 8</p> <p>1.3 Chemical interactions between the electrode and redox species 12</p> <p>1.4 Reaction kinetics at electrochemical interfaces 13</p> <p>1.4.1 Outer and inner sphere reactions 13</p> <p>1.4.2 Computational aspects 16</p> <p>1.4.3 Challenges 17</p> <p>1.5 Charge transport 18</p> <p>1.6 Mass transport to the electrode 18</p> <p>1.7 Summary 19</p> <p>References 20</p> <p><b>Part II </b><b>25</b></p> <p><b>2 Retrospective and Prospective Views of Electrochemical Electron Transfer Processes: Theory and Computations </b><b>27<br /></b><i>Renat R. Nazmutdinov and Jens Ulstrup</i></p> <p>2.1 Introduction -- interfacial molecular electrochemistry in recent retrospective 27</p> <p>2.1.1 An electrochemical renaissance 27</p> <p>2.1.2 A bioelectrochemical renaissance 27</p> <p>2.2 Analytical theory of molecular electrochemical ET processes 28</p> <p>2.2.1 A Reference to molecular ET processes in homogeneous solution 28</p> <p>2.2.2 Brief discussion of contemporary computational approaches 30</p> <p>2.2.3 Molecular electrochemical ET processes and general chemical rate theory 31</p> <p>2.2.4 Some electrochemical ET systems at metal electrodes 35</p> <p>2.2.4.1 Some outer sphere electrochemical ET processes 35</p> <p>2.2.4.2 Dissociative ET: the electrochemical peroxodisulfate reduction 38</p> <p>2.2.5 d-band, cation, and spin catalysis 39</p> <p>2.2.6 New solvent environments in simple electrochemical ET processes -- ionic liquids 40</p> <p>2.2.7 Proton transfer, proton conductivity, and proton coupled electron transfer (PCET) 40</p> <p>2.2.7.1 Some further notes on the nature of PT/PCET processes 44</p> <p>2.2.7.2 The electrochemical hydrogen evolution reaction, and the Tafel plot on mercury 44</p> <p>2.3 Ballistic and stochastic (Kramers-Zusman) chemical rate theory 45</p> <p>2.4 Early and recent views on chemical and electrochemical long-range ET 50</p> <p>2.5 Molecular-scale electrochemical science 53</p> <p>2.5.1 Electrochemical in situ STM and AFM 53</p> <p>2.5.2 Nanoscale mapping of novel electrochemical surfaces 54</p> <p>2.5.2.1 Self-assembled molecular monolayers (SAMs) of functionalized thiol [192-194] 54</p> <p>2.5.3 Electrochemical single-molecule ET and conductivity of complex molecules 56</p> <p>2.5.4 Selected cases of in situ STM and STS of organic and inorganic redox molecules 58</p> <p>2.5.4.1 The viologens 58</p> <p>2.5.4.2 Transition metal complexes as single-molecule in operando STM targets 59</p> <p>2.5.5 Other single-entity nanoscale electrochemistry 61</p> <p>2.5.5.1 Electrochemistry in low-dimensional carbon confinement 61</p> <p>2.5.5.2 Electrochemistry of nano- and molecular-scale metallic nanoparticles 62</p> <p>2.5.6 Elements of nanoscale and single-molecule bioelectrochemistry 63</p> <p>2.5.6.1 A single-molecule electrochemical metalloprotein target -- <i>P. aeruginosa </i>azurin 63</p> <p>2.5.6.2 Electrochemical SPMs of metalloenzymes, and some other "puzzles" 65</p> <p>2.6 Computational approaches to electrochemical surfaces and processes revisited 67</p> <p>2.6.1 Theoretical methodologies and microscopic structure of electrochemical interfaces 67</p> <p>2.6.2 The electrochemical process revisited 68</p> <p>2.7 Quantum and computational electrochemistry in retrospect and prospect 69</p> <p>2.7.1 Prospective conceptual challenges in quantum and computational electrochemistry 70</p> <p>2.7.2 Prospective interfacial electrochemical target phenomena 71</p> <p>2.7.2.1 Some conceptual, theoretical, and experimental notions and challenges 71</p> <p>2.7.2.2 Non-traditional electrode surfaces and single-entity structure and function 71</p> <p>2.7.2.3 Semiconductor and semimetal electrodes 72</p> <p>2.7.2.4 Metal deposition and dissolution processes 72</p> <p>2.7.2.5 Chiral surfaces and ET processes of chiral molecules 72</p> <p>2.7.2.6 ET reactions involving hot electrons (femto-electrochemistry) 73</p> <p>2.8 A few concluding remarks 73</p> <p>Acknowledgement 74</p> <p>References 74</p> <p><b>Part III </b><b>93</b></p> <p><b>3 Continuum Embedding Models for Electrolyte Solutions in First-Principles Simulations of Electrochemistry </b><b>95<br /></b><i>Oliviero Andreussi, Francesco Nattino, and Nicolas Georg Hörmann</i></p> <p>3.1 Introduction to continuum models for electrochemistry 95</p> <p>3.2 Continuum models of liquid solutions 97</p> <p>3.2.1 Continuum interfaces 98</p> <p>3.2.2 Beyond local interfaces 103</p> <p>3.2.3 Electrostatic interaction: polarizable dielectric embedding 105</p> <p>3.2.4 Beyond electrostatic interactions 107</p> <p>3.3 Continuum diffuse-layer models 109</p> <p>3.3.1 Continuum models of electrolytes 109</p> <p>3.3.2 Helmholtz double-layer model 110</p> <p>3.3.3 Poisson-Boltzmann model 111</p> <p>3.3.4 Size-modified Poisson-Boltzmann model 113</p> <p>3.3.5 Stern layer and additional interactions 114</p> <p>3.3.6 Performance of the diffuse-layer models 114</p> <p>3.4 Grand canonical simulations of electrochemical systems 118</p> <p>3.4.1 Thermodynamics of interfaces 119</p> <p>3.4.2 Ab-initio based thermodynamics of electrochemical interfaces 121</p> <p>3.4.3 Grand canonical simulations and the CHE approximation 123</p> <p>3.5 Selected applications 126</p> <p>Acknowledgments 129</p> <p>References 129</p> <p><b>4 Joint and grand-canonical density-functional theory </b><b>139<br /></b><i>Ravishankar Sundararaman and Tomás A. Arias</i></p> <p>4.1 Introduction 139</p> <p>4.2 JDFT variational theorem and framework 142</p> <p>4.2.1 Variational principle and underlying theorem 142</p> <p>4.2.2 Separation of effects and regrouping of terms 146</p> <p>4.2.3 Practical functionals and universal form for coupling 147</p> <p>4.3 Classical DFT with atomic-scale structure 148</p> <p>4.3.1 Ideal gas functionals with molecular geometry 149</p> <p>4.3.1.1 Effective ideal gas potentials 149</p> <p>4.3.1.2 Integration over molecular orientations 150</p> <p>4.3.1.3 Auxiliary fields 151</p> <p>4.3.2 Minimal excess functionals for molecular fluids 152</p> <p>4.4 Continuum solvation models from JDFT 157</p> <p>4.4.1 JDFT linear response: nonlocal 'SaLSA' solvation 158</p> <p>4.4.2 JDFT local limit: nonlinear continuum solvation 160</p> <p>4.4.3 Hybrid semi-empirical approaches: 'CANDLE' solvation 163</p> <p>4.5 Grand-canonical DFT 164</p> <p>4.6 Conclusions 168</p> <p>References 169</p> <p><b>5 <i>Ab initio </i>modeling of electrochemical interfaces and determination of electrode potentials </b><b>173<br /></b><i>Jia-Bo Le, Xiao-Hui Yang, Yong-Bing Zhuang, Feng Wang, and Jun Cheng</i></p> <p>5.1 Introduction 173</p> <p>5.2 Theoretical background of electrochemistry 175</p> <p>5.2.1 Definition of electrode potential 175</p> <p>5.2.2 Absolute potential energy of SHE 178</p> <p>5.3 Short survey of computational methods for modeling electrochemical interfaces 179</p> <p>5.4 <i>Ab initio </i>determination of electrode potentials of electrochemical interfaces 180</p> <p>5.4.1 Work function based methods 180</p> <p>5.4.1.1 Vacuum reference 180</p> <p>5.4.1.2 Vacuum reference in two steps 181</p> <p>5.4.2 Reference electrode based methods 183</p> <p>5.4.2.1 Computational standard hydrogen electrode 183</p> <p>5.4.2.2 Computational standard hydrogen electrode in two steps 185</p> <p>5.4.2.3 Computational Ag/AgCl reference electrode 187</p> <p>5.5 Computation of potentials of zero charge 187</p> <p>5.6 Summary 190</p> <p>Acknowledgement 191</p> <p>References 191</p> <p><b>6 Molecular Dynamics of the Electrochemical Interface and the Double Layer </b><b>201<br /></b><i>Axel Groß</i></p> <p>6.1 Introduction 201</p> <p>6.2 Continuum description of the electric double layer 202</p> <p>6.3 Equilibrium coverage of metal electrodes 204</p> <p>6.4 Firs
Summary "Electrochemistry and electrocatalysis are at the forefront of many technological fields related to solving the grand challenges encountered in advanced energy solutions, personalized medicine, and environmental issues. Electrochemical technologies of interest include, among others, batteries, CO2 mitigation, various sensor technologies, water purification, molecular electronics, fuel-cells, hydrogen powered energies, and solar-powered renewable technologies. To improve upon existing electrochemical technologies in a rational way, understanding and controlling the atomic scale properties of the electrochemical interface is vital. In particular, the connection between atomic scale surface chemistry and the electrocatalytical performance needs to be established. Rational design of better electrocatalysts working in complex electrochemical environments needs insight from experiments, computational methods, as well as theoretical approaches. While experimental electrochemical and spectroelectrochemical methods are well-established and can often be routinely applied, theoretical and computational methods have not yet reached the same level of maturity. The lack of generally accepted and applicable computational and theoretical tools is due to the high complexity of the electrochemical interface which provides a number of challenges for atomic scale theory and modelling. Specific challenges include; (i) inclusion of the electrode potential, (ii) the need for several time and length scales to assess both thermodynamic and kinetic properties of the solid-liquid interface, and (iii) a quantum mechanical treatment to describe chemical bond making and breaking"-- Provided by publisher.
Note Description based on online resource; title from digital title page (viewed on March 28, 2022).
Subject Electrochemistry.
Electrochemical analysis.
Electronic books.
Local Subj. Wiley ebook collection.
Alt Author Melander, Marko M., editor.
Laurila, Tomi, editor.
Laasonen, Kari, editor.
Standard # 9781119605652 electronic book
1119605652 electronic book
9781119605638 electronic book
1119605636 electronic book
9781119605621 electronic book
1119605628 electronic book
9781119605614 hardcover
10.1002/9781119605652 doi
17109748

Christopher Newport University | Paul and Rosemary Trible Library | Newport News, Virginia 23606  

Innovative Interfaces, Inc.