2 captures
17 Oct 2011 - 27 Sep 2012
About this capture

NIST Home > MML > Thermophysical Properties Division > Experimental Properties of Fluids Group > Dr. Thomas J. Bruno
Dr. Thomas J. Bruno
Dr. Bruno leads the Experimental Properties of Fluids Group of the Thermophysical Properties Division at NIST, Boulder. Dr. Bruno received his B.S. in chemistry from the Polytechnic Institute of Brooklyn (1976), and his M.S. and Ph.D. in physical chemistry from Georgetown University (1978, 1981). He served as a National Academy of Sciences-National Research Council postdoctoral associate at NIST, and was later appointed to the staff. He has done research on properties of fuel mixtures, explosives, reacting fluids, and environmental pollutants. He is also involved in research on supercritical fluid extraction and chromatography of bioproducts, the development of novel analytical methods for environmental contaminants, novel detection devices for chromatography, and he manages the division analytical chemistry laboratory. In his research areas, he has published nearly 210 research papers, 7 books, and has been awarded 7 patents.  One of his books, Handbook of Basic Tables for Chemical Analysis, is the 5th best- selling book in analytical chemistry. In addition, he was chairman of the Board of Trustees of the Mamie Doud Eisenhower Library (​http://www.broomfield.org/library/) for nine years. In his spare time, he is an avid and accomplished woodworker, and has hand-built all the furniture in his house.  Dr. Bruno is very proud of his wife, a talented musician, and his daughter, who is majoring in biology at the University of Colorado.
Research Interests: 
Fuel Characterization
Dr. Bruno has been a leader in the area of fuel characterization throughout his 30 years at NIST. He initially worked on gaseous mixtures of hydrogen and hydrocarbons and natural gas constituents, developing a direct measurement of hydrogen fugacity. He and his colleagues developed approaches to study the thermophysical properties of chemically reacting fluids (primarily fuel related), an activity that has continued to the present, with decomposition kinetics measurements on modern fuels. Interestingly, this work resulted in the development of one of the world's longest Arrhenius plots (spanning 11 orders of magnitude) for the thermal decomposition of the rocket propellant, RP-1. Most recently, he introduced the advanced distillation curve (ADC) approach for the characterization of complex fluids (primarily fuels). This method links thermodynamically consistent boiling temperatures to fluid composition, thus providing a theoretically meaningful basis on which to model fuel volatility. The method is used in numerous labs worldwide, and the essential components have been commercialized. To view a brief movie about this method, visit: http://www.nist.gov/public_affairs/techbeat/tb2008_0610.htm#crude​).
Trace Constituent Analysis:
The importance of trace constituents on the overall properties of complex fluids (such as fuels, bioproducts, etc.) is well understood. The contamination the natural gas pipelines with traces of polychlorinated biphenyls (PCBs) was recognized two decades ago, and the effect of PCBs on mixture properties were critical to design separation methods. Dr. Bruno and his colleagues developed the first concatenated approach to vapor pressure measurement, to rapidly characterize the 209 PCB congeners. This has lead to the 18-station instruments that we use today. Related to PCB analyses are our developments of surface energetics measurements. Beginning with the PCBs, we have developed metrology to measure interaction energies of trace fluids on surfaces. Our Group's extensive work with alternative refrigerants required the development of many trace constituent analytical procedures, standard data and databases. This work played an important role in the effective development of many of the thermodynamic and transport property models that have been released. In the area of bioproducts separation, Dr. Bruno and his colleagues made extensive use of supercritical fluid and alternative solvents (including alternative refrigerants) for extraction, resulting in many measurement methods and model development. He introduced Sepsol (separator/solvator) to simplify extraction and solute stabilization.  
Headspace Analysis:
The chemical analysis of condensed phase constituents can often be simplified by measuring them in the vapor space above their bulk, a concept called headspace analysis. The method has come a long way since the earliest purge and trap methods were introduced. Dr. Bruno recently introduced a new approach to headspace sampling: PLOT cryoadsorption. This method uses a porous layer of sorbent in a capillary column as the trap. He and his colleagues have shown that quantitative measurements can be obtained (with an uncertainty of 10 %) from a matrix with 10 ppb of the target solute, and a qualitative measurement with only 2 ppb. They have applied the method to energetic materials, food spoilage and the location of illegally buried corpses.  
Recent Representative Publications 
Bruno, T.J., Ott, L.S., Smith, B.L., Lovestead, T.M., Analysis of Complex Fluid Mixtures:  the Advanced Distillation Curve Approach, Anal. Chem., (Invited Feature), 82, 777-783, 2010. 
Lovestead, T.M., Bruno, T.J., Detection of Poultry Spoilage Markers from Headspace Analysis with Cryoadsorption on a Short Alumina  PLOT Column, Food Chemistry, 121, 1274-1282, 2010. 
Lovestead, T., Bruno, T.J., Trace Headspace Sampling for Quantitative Analysis of Explosives with Cryoadsorption on Short Alumina PLOT Columns, Anal. Chem., 82, 5621-5627, 2010. 
Lovestead, T.M., Bruno, T.J., Detecting gravesoil from headspace analysis with adsorption on short porous layer open tubular (PLOT) columns, Forensic Sci. International, in press. 
Hadler, A.B., Ott, L.S., Bruno, T.J., Study of azeotropic mixtures with the advanced distillation curve approach, Fluid Phase Equilibria, 281, 49-59, 2009. 
Smith, B.L., Ott, L.S., Bruno, T.J., Composition-explicit distillation curves of diesel fuel with glycol ether and glycol ester oxygenates: a design tool for decreased particulate emissions, Env. Sci. Tech., 40(20), 7682-7689, 2008. 
Widegren, J.A., Bruno, T.J., Thermal decomposition kinetics of the aviation turbine fuel Jet A, Ind. Eng. Chem. Res., 47(13), 4342-4348, 2008. 
Bruno, T.J., Improvements in the measurement of distillation curves: part 1: a composition explicit approach, Ind. Eng. Chem. Res., 45,4371-4380, 2006. (4th most cited paper in Ind. Eng. Chem. Res. for 2006) 
Andersen, W.C., Bruno, T.J., Kinetics of carbonyl sulfide hydrolysis Iⅈ: catalyzed and uncatalyzed reactions in mixtures of water + propane, Ind. Eng. Chem. Res, 42, 963-970; 42, 971-974, 2003. 
Lagalante, A.F., Hall., R.L., Bruno, T.J., Kamlet Taft solvatochromic parameters of the sub and supercritical fluorinated ethane solvents, J. Phys. Chem. B., 102, 6601-6604, 1998. 
Bruno, T.J., Svoronos, P.D.N., CRC Handbook of Basic Tables for Chemical Analysis*, Third Edition, CRC Press, Boca Raton, in production for December 2010. 
*The American Chemical Society has listed this book at the fifth best-selling book in analytical chemistry. 

Awards and Honors: 
Department of Commerce Bronze Medal; citation: "for outstanding leadership in research on reacting fluids", 1986. 
Letter of Commendation, U.S. Department of Justice, for service as a forensic consultant and expert witness, 2001. 
Department of Commerce Silver Medal; citation: "for the development of a new method for analyzing complex fluid mixtures that facilitates the introduction of new fuels into the U.S., 2010

Group Leader
Experimental Properties of Fluids Group
Thermophysical Properties Division
325 Broadway
Boulder, CO 80305-3337
Telephone: 303-497-5158
Fax: 303-497-5044
email: Bruno@boulder.nist.gov 
B.S. Chemistry, Polytechnic Institute of Brooklyn, New York City, 1976.
(Thesis: Direct Indexing of Laue Photographs, with Prof. Benjamin Post)
M.S. Chemistry, Georgetown University, Washington, D.C., 1978
Ph.D. Physical Chemistry, Georgetown University, Washington, D.C., 1981. 
(Dissertation: Thermodynamic Studies of Weak Hydrogen Bonds in Liquid Mixtures, with Prof. Daniel E. Martire)
Eugene Hult Award; Hercules Corp. Fellow 
National Academy of Sciences – National Research Council Postdoctoral Fellow, National Bureau of Standards, 1981 – 1983, with Howard J.M. Hanley
Professional Service:
ASTM International, voting member of Subcommittees D03, Gaseous Fuels.
Associate Editor (for analytical chemistry), CRC Handbook of Chemistry and Physics

Sign Up for NIST E-mail alerts:

The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.
Privacy policy / security notice / accessibility statement / Disclaimer / Freedom of Information Act (FOIA) /
Environmental Policy Statement / No Fear Act Policy / ExpectMore.gov (performance of federal programs) /
NIST Information Quality Standards / Scientific Integrity Summary
Date created: February 10, 2011 | Last updated: August 11, 2011    Contact: Webmaster
NIST TimeNIST HomeAbout NISTContact UsA-Z Site Index
What We DoOrganizationDivisionsWorking with MMLHonors and AwardsContact UsPublicationsBioscience and HealthChemistryElectronics and TelcomEnergyEnvironmentInternational ActivitiesMaterials ScienceMeasurement StandardsNanotechnologyPublic Safety and SecurityTransportationChemistry WebBookEconomic Impact StudiesMaterials DatabasesRecommended Practice GuidesStandard Reference DataStandard Reference MaterialsThermodynamics Research CenterWorkshops & ConferencesNews/MultimediaEventsPrograms/ProjectsFacilities