K. Travis Holman Associate Professor Department of Chemistry Office: Basic Science 111Georgetown University 37th and O Streets NW Washington, DC 20057-1227 Phone: 202-687-4027 Fax: 202-687-6209 E-mail: | |
Lab web site | http://www.holmanchemistry.net/ |
Education / Background | B.S. 1994 Saint Mary's University Ph.D. 1998 University of Missouri-Columbia NSERC of Canada Postdoctoral Fellow, Dept. of Chemical Engineering and Materials Science, 1999-2001, University of Minnesota NSF CAREER Award (2004) |
Teaching | Organic Chemistry; Organic Chemistry Laboratory I; Advanced General Chemistry; Intro to Research Experimentation, X-Ray Crystallography, Special Topics in Organic Chemistry |
Research Interests | Supramolecular and molecular recognition chemistry, encapsulation chemistry, anion binding, organocatalysis, solid-state organic chemistry, crystal engineering, metal-organic materials, crystallography, polymorphism, metal-arene chemistry Research in the Holman lab generally lies at the intersection of organic, organometallic, and solid-state chemistry. Broadly, we are interested in molecular recognition and supramolecular chemistry ― the organization of molecules into multi-component entities through non-covalent forces. With respect to solution phase chemistry, our interests lead us to the design of molecules capable of selectively binding and/or sensing appropriate substrates, those capable of spontaneously organizing into interesting and complex structures, or those that might influence the organization of other molecules, perhaps for purposes of reaction (e.g., supramolecular organocatalysis). Applied to the solid-state, we use supramolecular principals to attempt to empirically design crystalline structure (e.g., crystal engineering), thereby being able to impart selected properties to materials. Research projects are inherently multidisciplinary, allowing students to develop expertise in synthetic organic and/or organometallic chemistry, physical organic chemistry, solid-state organic chemistry, powder and single crystal X-ray diffraction, various spectroscopic techniques (NMR, neutron scattering), thermal analysis, etc. Current projects involve: 1. Molecular Encapsulation A principal area of research in our group involves the synthesis and study of so-called container molecules. As the name suggests, container molecules possess the unique and remarkable ability to completely encapsulate smaller, molecule-sized substrates. This feature provides several attractive avenues for chemistry. To name but a few, container molecules have been used for (enantio)selective recognition and sensing, for stabilizing and characterizing highly reactive chemical species, as micro-reaction chambers, and to demonstrate new forms of stereo- and “social” isomerism. Our work in this area falls into a few categories:
2. Metal-Organic and Metal-Organometallic Materials The past fifteen years have witnessed the burgeoning of a powerful new approach in synthetic solid-state chemistry based upon the premise that simple organic ligands can be judiciously combined with simple transition metal ions to give new and important materials with controllable architectures and useful properties (e.g., porosity, low density, high surface area). Our own work in the field involves the exploratory synthesis of new metal-organic framework (MOF) materials derived from designer-ligands which are expected to impart unique properties. These ligands might be:
3. Metal-Arene Chemistry Appendage of electron withdrawing transition metal moieties to arenes dramatically affects their reactivity and supramolecular chemistry. With respect to chemical reactivity, we are further exploring the well-known ability of transition metals to activate arenes toward nucleophilic attack. For instance, we have achieved, for the first time, the regiospecific syntheses of various arylsulfonates by sulfodehalogenation of a series of metal-activated aryl chlorides. We are also exploring the anion-pi interactions of pi-acidic, metalated arenes. |
Representative Publications | Ugono, O.; Holman, K. T. "An achiral form of the hexameric resorcin[4]arene capsule sustained by hydrogen bonding with alcohols," Chem. Commun. 2006, 2144-2146. Fairchild, R. M.; Holman, K. T. “Selective anion encapsulation by a metalated cryptophane with a pi-acidic interior,” J. Am. Chem. Soc. 2005, 127,16364-16365. Mough, S. T.; Goeltz, J. C.; Holman, K. T. “Isolation and Structure of an ‘Imploded’ Cryptophane” Angew. Chem. Int. Ed. 2004, 43, 5631-5635. Holman, K. T. “Cryptophanes: Molecular Containers” In Encyclopedia of Supramolecular Chemistry; J. A. Atwood, J. W. Steed, Eds., Marcel Dekker: New York, NY 2004; pp. 340-348. Holman, K. T.; Hammud, H. H.; Isber S.; Tabbal, M. “One-dimensional coordination polymer [Co(H2O)4(pyz)](NO3)2·2H2O (pyz = pyrazine) with intra- and inter-chain H-bonds: structure, electronic spectral studies and magnetic properties” Polyhedron, 2005, 221-228. |