DOI:​10.1016/j.compag.2015.04.012
Corpus ID: 27771102
Determination of the most influential weather parameters on reference evapotranspiration by adaptive neuro-fuzzy methodology
D. Petkovic, M. Gocić, +4 authors H. Bonakdari
Published 2015
Mathematics, Computer Science

Comput. Electron. Agric.
The monthly ET0 data were obtained by the Penman-Monteith method.ANFIS was applied for selection of the most influential ET0 parameters.Tmin, ea and sunshine hours are the most influential for ET0… Expand
View Via Publisher
Umcms.Um.Edu.My
Share This Paper




54 Citations
Highly Influential Citations
1
Background Citations
9
Methods Citations
6
Figures, Tables, and Topics from this paper
Figure 1
Table 1
Figure 2
Table 2
Figure 3
Table 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Adaptive neuro fuzzy inference system
Coefficient of determination
Feature selection
Neuro-fuzzy
Mean squared error
Performance Evaluation
Inference engine
54 Citations
Subset Modeling Basis ANFIS for Prediction of the Reference Evapotranspiration
B. Keshtegar, O. Kisi, Hamed Ghohani Arab, M. Zounemat-Kermani
Mathematics
Water Resources Management

2017
17 Citations
Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios
H. Sanikhani, O. Kisi, E. Maroufpoor, Z. M. Yaseen
MathematicsTheoretical and Applied Climatology
2018
52 Citations
Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements
Vahid Nourani, Gozen Elkiran, Jazuli Abdullahi
Mathematics
2019
27 Citations
Comparative analysis of reference evapotranspiration equations modelling by extreme learning machine
M. Gocić, D. Petkovic, Shahaboddin Shamshirband, A. Kamsin
Mathematics, Computer Science
Comput. Electron. Agric.
2016
45 Citations
Using ANFIS for selection of more relevant parameters to predict dew point temperature
Kasra Mohammadi, Shahaboddin Shamshirband, D. Petkovic, Por Lip Yee, Zulkefli Mansor
Environmental Science
2016
33 Citations
Optimization weather parameters influencing rainfall prediction using Adaptive Network-Based Fuzzy Inference Systems (ANFIS) and linier regression
D. Munandar
Computer Science
2015 International Conference on Data and Software Engineering (ICoDSE)
2015
1 Citation
Polynomial chaos expansion and response surface method for nonlinear modelling of reference evapotranspiration
B. Keshtegar, O. Kisi, M. Zounemat-Kermani
Mathematics
2019
8 Citations
Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?
Wilber Laqui, R. Zubieta, P. Rau, Abel Mejía, W. Lavado, Eusebio Ingol
Environmental Science
Modeling Earth Systems and Environment
2019
5 Citations
Determination of dominant weather parameters on reference evapotranspiration by path analysis theory
Xuguang Xing, Ye Liu, Wen'gang Zhao, D. Kang, M. Yu, Xiaoyi Ma
Mathematics, Computer Science
Comput. Electron. Agric.
2016
15 Citations
Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region
Min Wu, Q. Feng, +4 authors D. Sheng
Environmental Science
2020
PDF
...
1
2
3
4
...
References
SHOWING 1-10 OF 72 REFERENCES
Daily Evapotranspiration Modeling from Limited Weather Data by Using Neuro-Fuzzy Computing Technique
Fatemeh Karimaldini, L. Shui, T. Mohamed, M. Abdollahi, N. Khalili
Engineering
2012
27 Citations
PDF
Estimation of Monthly Mean Reference Evapotranspiration in Turkey
H. Citakoglu, Murat Cobaner, T. Haktanir, O. Kisi
Mathematics
Water Resources Management

2013
56 Citations
Comparison of Two Different Adaptive Neuro-Fuzzy Inference Systems in Modelling Daily Reference Evapotranspiration
O. Kisi, M. Zounemat-Kermani
EconomicsWater Resources Management
2014
44 Citations
Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran
J. Shiri, A. Nazemi, +4 authors P. Martí
Mathematics
2014
104 Citations
Evaporation Estimation Using Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System Techniques
A. Moghaddamnia, M. G. Gousheh, J. Piri, S. Amin, Dawei Han
Engineering
2009
174 Citations
Estimating daily reference evapotranspiration using available and estimated climatic data by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN)
A. Baba, J. Shiri, O. Kisi, A. Fard, Sungwon Kim, R. Amini
Mathematics
2013
54 Citations
PDF
Evapotranspiration estimation by two different neuro-fuzzy inference systems
Murat Cobaner
2011
125 Citations
Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration
J. Shiri, A. Nazemi, +4 authors P. Martí
Environmental Science
2013
47 Citations
Evapotranspiration modelling from climatic data using a neural computing technique
O. Kisi
Mathematics
2007
146 Citations
Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain)
J. Shiri, O. Kisi, G. Landeras, J. J. López, A. Nazemi, L. Stuyt
Environmental Science
2012
120 Citations
...
1
2
3
4
...
SORT BY
Related Papers
Estimation of Reference Evapotranspiration Using Neural Networks and Cuckoo Search Algorithm
Shahaboddin Shamshirband, Mohsen Amirmojahedi, +4 authors Slaviša Trajković
Mathematics
2016
AbstractThe ability to optimize an artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in ...
33 Citations
Comparative analysis of reference evapotranspiration equations modelling by extreme learning machine
M. Gocić, D. Petkovic, Shahaboddin Shamshirband, A. Kamsin
Mathematics, Computer Science
Comput. Electron. Agric.
2016
Forecasting ET0 is important for agricultural production and irrigation scheduling.Differences of performance between co...
45 Citations
Show More
2/10
Abstract
Figures, Tables, and Topics
54 Citations
72 References
Related Papers
Stay Connected With Semantic Scholar
What Is Semantic Scholar?
Semantic Scholar is a free, AI-powered research tool for scientific literature, based at the Allen Institute for AI.
Learn More
About
About Us
Publishers
Beta Program
Contact
Research
Team
Datasets
Open Corpus
Supp.ai
Resources
Librarians
Tutorials
FAQ
API
Proudly built by AI2
Terms of ServicePrivacy Policy
By clicking accept or continuing to use the site, you agree to the terms outlined in our Privacy Policy, Terms of Service, and Dataset License
ACCEPT & CONTINUE